Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T15:13:51.955Z Has data issue: false hasContentIssue false

Geochemistry of bimodal amphibolitic—felsic gneiss complexes from eastern Massif Central, France

Published online by Cambridge University Press:  01 May 2009

Bernard Briand
Affiliation:
Centre des Sciences de la Terra, Université Claude Bernard, Lyon-1, 27-43 Bd. du 11 Novembre, F-69622 Villeurbanne Cedex, France
Jean-Luc Bouchardon
Affiliation:
Ecole Nationale Supérieure des Mines de St Etienne, 158 bis Cours Fauriel, F-42023 St Etienne cedex, France
Houssa Ouali
Affiliation:
Centre des Sciences de la Terra, Université Claude Bernard, Lyon-1, 27-43 Bd. du 11 Novembre, F-69622 Villeurbanne Cedex, France
Michel Piboule
Affiliation:
Institut Dolomieu, rue Maurice Gignoux, F-38031, Grenoble cedex, France
Paul Capiez
Affiliation:
Centre des Sciences de la Terra, Université Claude Bernard, Lyon-1, 27-43 Bd. du 11 Novembre, F-69622 Villeurbanne Cedex, France

Abstract

High-grade basic and acidic meta-igneous rocks are widespread in the bimodal amphibolitic—felsic gneiss complexes, which are characteristic formations of the ‘Middle Allochthonous Unit’ from eastern and southern French Massif Central. The metabasites from the Lyonnais and Doux complexes are chemically diverse and range from N-MORB type tholeiitic to transitional types. The two populations are not related by fractional crystallization or crustal contamination processes and their chemical characteristics reflect differences in their mantle sources. An ensialic setting is supported by the crustally-derived character of some of the associated felsic rocks, but the presence of N-MORB-type metabasites argues for an extensional environment. This bimodal association compares well with the magmatism of rifted continental margins and may reflect a transitional stage between continental rifting and oceanic crust formation during the Cambro-Ordovician spreading event.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology 93, 219–30.CrossRefGoogle Scholar
Bebien, J., Dubois, R., & Gauthier, A., 1986. Example of ensialic ophiolites emplaced in a wrench zone: innermost hellenic ophiolite belt (Greek Macedonia). Geology 14, 1016–19.2.0.CO;2>CrossRefGoogle Scholar
Bernard-Griffiths, J., Carpenter, M. S. N., Peucat, J. J., & Jahn, B. M., 1986. Geochemical and isotopic characteristics of blueschist facies rocks from the Ile de Groix, Armorican Massif (northwest France). Lithos 19, 235–53.CrossRefGoogle Scholar
Bernard-Griffiths, J., & Jahn, B. M., 1981. REE geochemistry of eclogites and associated rocks from Sauviat-sur-Vige, Massif Central français. Lithos 14, 263–74.CrossRefGoogle Scholar
Bernard-Griffiths, J., Peuchat, J. J., Cornichet, J., Ponce de Leon, M. I., & Gil Ibarguchi, J. I., 1985. U-Pb, Nd isotope and REE geochemistry in eclogites from the Cabo Ortegal Complex, Galicia, Spain: an example of REE immobility conserving MORB-like patterns during high-grade metamorphism. Chemical Geology 52, 217–25.Google Scholar
Bernard-Griffiths, J., Peucat, J. J., & Menot, R. P., 1991. Isotopic (Rb-Sr, U-Pb and Sm-Nd) and trace element geochemistry of eclogites from the pan-African belt: a case study of REE fractionation during high-grade metamorphism. Lithos 27, 4357.CrossRefGoogle Scholar
Blenvenu, P., Bougault, H., Joron, J. L., Treuil, M., & Dmitriev, L., 1990. MORB alteration: rare-earth elements/non-rare-earth hygromagmaphile elements fractionation. Chemical Geology 82, 114.CrossRefGoogle Scholar
Bouchardon, J. L., Santallier, D., Briand, B., Ménot, R. P., & Piboule, M., 1989. Eclogites in the French Palaeozoic Orogen: geodynamic significance. Tectonophysics 169, 317–32.CrossRefGoogle Scholar
Briand, B., Bouchardon, J. L., Santallier, D., Piboule, M., Ouali, H., & Capiez, P., 1992. Affinité alcaline des métabasites des séries périphériques du domaine granito-migmatitique du Velay. Géologie de la France 2, 915.Google Scholar
Briand, B., Piboule, M., Santallier, D., & Bouchardon, J. L., 1991. Geochemistry and tectonic implications of two Ordovician bimodal igneous complexes, southern French Massif central. Journal of the Geological Society, London 148, 959–71.CrossRefGoogle Scholar
Brouxel, M., Lapierre, H., Michard, A., & Albarede, F., 1987. The deep layers of a Palaeozoic arc: geochemistry of the Copley-Balaklala Series, northern California. Earth and Planetary Science Letters 69, 297308.Google Scholar
Coish, R. A., & Sinton, C. W., 1992. Geochemistry of mafic dikes in the Adirondack mountains: implications for late Proterozoic continental rifting. Contribution to Mineralogy and Petrology 110, 500–14.CrossRefGoogle Scholar
Costa, S., Maluski, H., & Lardeaux, J. M., 1993. 40Ar-39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central, France). Chemical Geology 105, 339–59.CrossRefGoogle Scholar
David, J., Gariepy, C., & Philippe, S., 1991. Lower Paleozoic tholeiitic dykes from central New Brunswick: possible evidence for the early opening of an ensialic Taconian back-arc basin. Canadian Journal of Earth Sciences 28, 1444–54.CrossRefGoogle Scholar
de Paolo, D. J., 1981. Trace element and isotopic effects of combined wallrock and fractional crystallisation. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
Downes, H., Bodinier, J. L., Dupuy, C., Leyreloup, A., & Dostal, J., 1989. Isotope and trace-element heterogeneities in high-grade basic metamorphic rocks of Marvejols: tectonic implications for the Hercynian suture zone of the French Massif Central. Lithos 24, 3754.CrossRefGoogle Scholar
Downes, H., Dupuy, C., & Leyreloup, A., 1990. Crustal evolution of the Hercynian belt of Western Europe: evidence from lower-crustal granulitic xenoliths (French Massif Central). Chemical Geology 83, 209–31.CrossRefGoogle Scholar
Dubuisson, G., Mercier, J. C., Girardeau, J., & Frison, J. Y., 1989. Evidence for a lost ocean in Variscan terranes of the western Massif Central, France. Nature 337, 729–32.CrossRefGoogle Scholar
Dufour, E., 1985. Granulite facies metamorphism and retrogressive evolution of the Monts du Lyonnais metabasites (Massif Central, France). Lithos 18, 97113.CrossRefGoogle Scholar
Dupuy, C., Marsh, J., Dostal, J., Michard, A., & Testa, S., 1988. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace elements and isotopic evidence. Earth and Planetary Science Letters 87, 100–10.CrossRefGoogle Scholar
Duthou, J. L., Piboule, M., Gay, M., & Dufour, E., 1981. Datations radiométriques Rb—Sr sur les orthogranulites des Monts du Lyonnais (Massif Central français). Comptes Rendus de l’ Académic des Sciences de Paris 292 (II), 749–52.Google Scholar
Floyd, P. A., & Winchester, J. A., 1978. Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology 21, 291306.CrossRefGoogle Scholar
Floyd, P. A., & Winchester, J. A., 1983. Element mobility associated with meta-shear zones within the Ben Hope amphibolite suite, Scotland. Chemical Geology 39, 115.CrossRefGoogle Scholar
Fodor, R. V., & Vetter, S. K., 1984. Rift zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin. Contributions to Mineralogy and Petrology 88, 307–21.CrossRefGoogle Scholar
Furnes, H., Kryza, R., & Muszynski, A., 1989. Geology and geochemistry of Early Paleozoïc volcanics of the Swierzawa Unit, Kaczawa Mts., W. Sudetes, Poland. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 3, 136–54.CrossRefGoogle Scholar
Gardien, V., 1993. Les reliques petrologiques de haute à moyenne pression des séries du Vivarais oriental (Est du Massif Central français). Comptes Rendus de l’ Académie des Sciences de Paris 316 (II), 1247–54.Google Scholar
Gardien, V., & Lardeaux, J. M., 1991. Découverte d’eclogites dans la synforme de Maclas: extension de l’unité supérieure des gneiss à l’ Est du Massif Central. Comptes Rendus de l’ Académie des Sciences de Paris 312 (II), 61–8.Google Scholar
Gardien, V., Tegyey, M., Lardeaux, J. M., Misseri, M., & Dufour, E., 1990. Crust-mantle relationships in the French Variscan chain: the example of the southern Monts du Lyonnais unit (eastern French Massif Central). Journal of Metamorphic Geology 8, 477–92.CrossRefGoogle Scholar
Girardeau, J., Dubuisson, G., & Mercier, J. C. C., 1986. Cinématique de mise en place des ophiolites et nappes cristallophylliennes dans le Limousin, ouest du Massif Central français. Bulletin de la Société géologique de France 8, 849–60.CrossRefGoogle Scholar
Griffin, W. L., & Brueckner, H. K., 1985. REE, Rb—Sr and Sm—Nd studies of Norwegian eclogites. Chemical Geology 52, 249–71.Google Scholar
Hart, W. K., Woldegabriel, G., Walter, R. C., & Mertzman, S. A., 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research 94, 7731–48.CrossRefGoogle Scholar
Hovorka, D., Meres, S., & Ivan, P., 1993. Introduction to the Pre-Alpine Western Carpathians Basement Complexes. In Pre-Alpine Events in the Western Carpathians’ Realm. Starà Lesnà-Excursion Guide (eds Pitonàk, P. and Spisiak, J.), pp. 21–9. Bratislava: Slovak Academic Press Ltd.Google Scholar
Humphris, S. E., 1984. The mobility of the rare earth elements in the crust. In Rare Earth Element Geochemistry, Developments in Geochemistry, vol. 2 (ed. Henderson, P.), pp. 317–42. Amsterdam: Elsevier.CrossRefGoogle Scholar
Joron, J. L., & Treuil, M., 1989. Hygromagmaphile element distribution in oceanic basalts as fingerprints of partial melting and mantle heterogeneities: a specific approach and proposal of an identification and modelling method. In Magmatism in the Ocean Basins (eds Saunders, A. D. and Norry, M. J.), pp. 277–99. Geological Society of London, Special Publication no. 42.Google Scholar
Lardeaux, J. M., & Dufour, E., 1987. Superposed strain patterns in the Variscan chain — Example in the northern Mont du Lyonnais area (French Massif Central). Comptes Rendus de l’ Académie des Sciences de Paris 305 (II), 61–4.Google Scholar
Lardeaux, J. M., Reynard, B., & Dufour, E., 1989. Kornerupine-bearing granulites and post-orogenic decompression of the Lyonnais mounts (Massif Central, France). Comptes Rendus de l’ Académie des Sciences de Paris 308 (II), 1443–49.Google Scholar
Leat, P. T., Jackson, S. E., Thorpe, R. S., & Stillman, C. J., 1986. Geochemistry of bimodal basaltsubalkaline/peralkaline rhyolite province within the Southern British Caledonides. Journal of the Geological Society 143, 259–73.CrossRefGoogle Scholar
Ledru, P., Autran, A., & Santallier, D., 1994. Lithostatigraphy of Variscan Terranes in the French Massif Central: A basis for Paleogeographical Reconstructions. In Pre-Mesozoic Geology in France (ed. Keppie, J. D.), pp. 276–88. Berlin: Springer Verlag.Google Scholar
Ledru, P., Lardeaux, J. M., Santallier, D., Autran, A., Quenardel, J. M., Floc’h, J. P., Lerouge, G., Maillet, N., Marchand, J., & Ploquin, A., 1989. Ou sont les nappes dans le Massif Central français?. Bulletin de la Société géologique de France 8, 605–18.CrossRefGoogle Scholar
Le Roex, A. P., Dick, H. B. J., Reid, A. M., Frey, F. A., Erlank, A. J., & Hart, S. R., 1985. Petrology and geochemistry of basalts from the American-Antarctic ridge, southern Ocean: implication for the westward influence of the Bouvet mantle plume. Contribution to Mineralogy and Petrology 90, 367–80.CrossRefGoogle Scholar
Lightfoot, P. C., Sutcliffe, R. H., & Doherty, W., 1991. Crustal contamination identified in Keweenawan Osier group tholeiites, Ontario: a trace element perspective. Journal of Geology 99, 739–60.CrossRefGoogle Scholar
Malavielle, J., Guilhot, P., Costa, S., Lardeaux, J. M., & Gardien, V., 1990. Collapse of a thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and Saint-Etienne Upper Carboniferous basin. Tectonophysics 177, 139–49.CrossRefGoogle Scholar
Matte, P., 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196, 309–37.CrossRefGoogle Scholar
McKenzie, D., & Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–80.CrossRefGoogle Scholar
McKenzie, D., & O’Nions, R. K., 1991. Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.CrossRefGoogle Scholar
Ménot, R. P., Peucat, J. J., Scarenzi, D., & Piboule, M., 1988. 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a Lower Paleozoic oceanization. Earth and Planetary Science Letters 88, 8292.CrossRefGoogle Scholar
Merriman, R. J., Bevins, R. E., & Ball, J. K., 1986. Petrology and Geochemical Variations within the Tall Y Fan Intrusion: a Study of Element Mobility During Low-Grade Metamorphism with Implications for Petrotectonic and Modelling. Journal of Petrology 27, 1409–36.CrossRefGoogle Scholar
Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb—Zr—Y diagram. Chemical Geology 56, 207–18.CrossRefGoogle Scholar
Montel, J. M., Marignac, C., Barbey, P., & Plchavant, M., 1992. Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif central). Journal of Metamorphic Geology 10, 115.CrossRefGoogle Scholar
Mörk, M. B. E., & Brunfelt, A. O., 1988. Geochemical comparisons of coronitic gabbro and eclogites: metamorphic effects and the origin of eclogite protoliths (Flemsöy, Sunnmöre, Western Norway). Norsk Geologisk Tiddskrif 68, 5163.Google Scholar
Mörk, M. B. E., & Mearns, E. W., 1988. Sm—Nd systematics of a gabbro-eclogite transition. Lithos 19, 255–67.CrossRefGoogle Scholar
Murphy, J. B., & Hynes, A. J., 1986. Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two metabasaltic suites in the Appalachians. Canadian Journal of Earth Science 23, 1138–44.CrossRefGoogle Scholar
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Ada 38, 757–75.CrossRefGoogle Scholar
Pallister, J. S., 1987. Magmatic history of Red Sea rifting: perspective from the central Saudi Arabian coastal plain. Geological Society of America Bulletin 98, 400–17.2.0.CO;2>CrossRefGoogle Scholar
Pearce, J. A., 1982. Trace elements characteristics of lavas from destructive plate boundaries. In Andesites: Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.), pp. 525–48. New York: John Wiley and Sons.Google Scholar
Pearce, J. A., 1983. Role of the sub-continental lithosphere in magmas genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 230–49. Nantwich: Shiva Publishing Limited.Google Scholar
Pearce, J. A., Harris, N. B. W., & Tindle, A. G., 1984. Trace elements discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pearce, J. A., & Norry, N. J., 1979. Petrogenetic implication of Ti, Zr, Y, and Nb variations in volcanic rocks. Contribution to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Piboule, M., & Briand, B., 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chemical Geology 50, 189–99.CrossRefGoogle Scholar
Pin, C., 1990. Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177, 215–27.CrossRefGoogle Scholar
Pin, C., & Lancelot, J. R., 1982. U—Pb dating of an Early Palaeozoic bimodal magmatism in the French Massif Central and its further metamorphic evolution. Contributions to Mineralogy and Petrology 79, 112.CrossRefGoogle Scholar
Pin, C., & Marini, F., 1993. Early Ordovician continental break-up in Variscan Europe: Nd—Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif central, France. Lithos 29, 177–96.CrossRefGoogle Scholar
Pin, C., Ortega, Cuesta L. A., & Gil Ibarguchi, J. I., 1992. Mantle-derived, early Paleozoic A-type meta-granitoids from the NW Iberian Massif: Nd isotope and trace element constraints. Bulletin de la Société géologique de France 163, 406–13.Google Scholar
Pin, C., & Peucat, J. J., 1986. Ages des épisodes de métamorphismes paléozoiques dans le Massif Central et le Massif Armoricain. Bulletin de la Société géologique de France 8, 461–9.CrossRefGoogle Scholar
Prinzhoffer, A., & Allègre, C. J., 1985. Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters 74, 251–65.CrossRefGoogle Scholar
Ricci, C. A., & Sabatini, G., 1978. Petrogenetic affinity and geodynamic significance of metabasic rocks from Sardinia, Corsica and Provence. Neues Jahrbuch für Mineralogie, Monatshefte 1, 2838.Google Scholar
Rudnick, R. L., 1983. Geochemistry and tectonic affinities of Proterozoic bimodal igneous suite, west Texas. Geology 11, 352–5.2.0.CO;2>CrossRefGoogle Scholar
Santallier, D. S., 1983. Main metamorphic features of the Paleozoic Orogen in France. In Regional Trends in the Appalachian-Caledonian-Hercynian-Mauritanide Orogen, (ed. Shenk, P. E.), pp. 263–74. Dordrecht: Reidel.CrossRefGoogle Scholar
Santallier, D., Briand, B., Ménot, R. P., & Piboule, M., 1988. Les complexes leptyno-amphiboliques (C.L.A.): revue critique et suggestions pour un meilleur emploi de ce terme. Bulletin de la Société géologique de France 8, 312.CrossRefGoogle Scholar
Saunders, A. D., Norry, M. J., & Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. In Oceanic and Continental Lithospheres: Similarities and Differences (eds Menzies, M. A. and Cox, K. G.), pp. 415–45. Journal of Petrology, Special Volume.Google Scholar
Seyler, M., 1986. Petrology and genesis of Hercynian alkaline orthogneisses from Provence, France. Journal of Petrology 27, 1229–51.CrossRefGoogle Scholar
Shatsky, V. S., Kozmenko, O. A., & Sobolev, N. V., 1990. Behaviour of rare-earth elements during high-pressure metamorphism. Lithos 25, 219–26.CrossRefGoogle Scholar
Shervais, J. W., 1982. Ti—V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.CrossRefGoogle Scholar
Snyder, C. A., Taylor, L. A., & Neal, C. R., 1992. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochimica et Cosmochimica Acta 56, 3809–23.CrossRefGoogle Scholar
Storey, B. C., Hole, M. J., Pankhurst, R. J., Millar, I. L., & Vennum, W., 1988. Middle Jurassic within-plate granites in West Antarctica and their bearing on the break-up of Gondwanaland. Journal of the Geological Society, London 145, 9591007.CrossRefGoogle Scholar
Stosch, H. G., & Lugmair, G. W., 1990. Geochemistry and evolution of MORB-type eclogites from the Munch berg Massif, southern Germany. Earth and Planetary Science Letters 99, 230–49.CrossRefGoogle Scholar
Sun, S. S., & McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. and Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R., & McClennan, S. M., 1985. The Continental Crust: its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Thompson, R. N., & Morrison, M. A., 1988. Asthenospheric and lower lithospheric mantle contributions to continental extensional magmatism: an example from the British tertiary province. Chemical Geology 68, 115.CrossRefGoogle Scholar
Twist, D., & Harmer, J. R. E., 1987. Geochemistry of contrasting siliceous magmatic suites in the Bushveld complex: genetic aspects and implications for tectonic discrimination diagrams. Journal of Volcanology and Geothermal Research 32, 8398.CrossRefGoogle Scholar
Watson, B., 1979. Zircon saturation in felsic liquids: experimental results and application to trace elements geochemistry. Contribution to Mineralogy and Petrology 70, 407–19.CrossRefGoogle Scholar
Wood, D. A., 1980. The application of a Th—Hf—Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.CrossRefGoogle Scholar
Wood, D. A., Joron, J. L., Treuil, M., Norry, M., & Tarney, J., 1979. Elemental and Sr Isotopic Variations in Basic Lavas From Iceland and the Surrounding Ocean Floor. Contribution to Mineralogy and Petrology 70, 319–39.CrossRefGoogle Scholar
Woodhead, J., Eggins, S., & Gamble, J., 1993. High field strength and transition elements in island arc and backarc basins basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters 114, 491504.CrossRefGoogle Scholar