Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T10:55:24.135Z Has data issue: false hasContentIssue false

Life is everywhere in sinters: examples from Jurassic hot-spring environments of Argentine Patagonia

Published online by Cambridge University Press:  18 July 2019

Diego M Guido*
Affiliation:
CONICET and Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Instituto de Recursos Minerales (INREMI), Calle 64 y 120, La Plata (1900), Argentina
Kathleen A Campbell
Affiliation:
School of Environment and Te Ao Mārama – Centre for Fundamental Inquiry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Frédéric Foucher
Affiliation:
CNRS-Centre de Biophysique Moléculaire, Orléans, France
Frances Westall
Affiliation:
CNRS-Centre de Biophysique Moléculaire, Orléans, France
*
Author for correspondence: Diego M Guido, Email: diegoguido@yahoo.com

Abstract

Jurassic siliceous hot-spring (sinter) deposits from Argentine Patagonia were evaluated to determine the distribution and preservation quality of their entombed microbial fabrics. Detailed study showed that the Claudia palaeo-geothermal field hosts the best-preserved sinter apron in the Deseado Massif geological province, where we also found hot-spring silica–biotic interactions extending into hydrothermally influenced fluvial and lacustrine settings. Carbonaceous material was identified by petrography and Raman spectroscopy mapping; it is inter-laminated with silica across proximal vent to distal marsh facies. The ubiquitous presence of microbial biosignatures has application to studies of hydrothermal settings of early life on Earth and potentially Mars.

Type
Rapid Communication
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blank, CE, Cady, SL and Pace, NR (2002) Microbial composition of near-boiling silica depositing thermal springs throughout Yellowstone National Park. Applied and Environmental Microbiology 68, 5123–35.CrossRefGoogle ScholarPubMed
Brock, TD (1978) Thermophilic Microorganisms and Life at High Temperatures. New York: Springer-Verlag, 465 pp.CrossRefGoogle Scholar
Cady, SL and Farmer, JD (1996) Fossilization processes in siliceous thermal springs. Trends in preservation along thermal gradients. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?): Proceedings of the CIBA Foundation Symposium No. 202 (eds Bock, GR and JGoode, A), pp. 150–73. Chichester: Wiley.Google Scholar
Cady, SL, Farmer, JD, Des Marais, DJ and Blake, DF (1995) Columnar and spicular geyserites from Yellowstone National Park, WY: scanning and transmission electron microscopy evidence for biogenicity. Geological Society of America Abstracts with Programs, 27, A305.Google Scholar
Cady, SL, Skok, JR, Gulick, VG, Berger, JA and Hinman, NW (2018) Siliceous hot spring deposits: why they remain key astrobiological targets. In From Habitability to Life on Mars, pp. 179210. Amsterdam: Elsevier.CrossRefGoogle Scholar
Campbell, KA, Guido, DM, Gautret, P, Foucher, F, Ramboz, C and Westall, F (2015a) Geyserite in hot-spring siliceous sinter: window on Earth’s hottest terrestrial paleoenvironment and its extreme life. Earth-Science Reviews 148, 4464.CrossRefGoogle Scholar
Campbell, KA, Guido, DM, Vikre, PG, John, DA, Rhys, D and Hamilton, A (2019) The Miocene Atastra Creek sinter (Bodie Hills volcanic field, California and Nevada): 4D evolution of a geomorphically intact siliceous hot spring deposit. Journal of Volcanology and Geothermal Research 370, 6581.CrossRefGoogle Scholar
Campbell, KA, Lynne, BY, Handley, KM, Jordan, S, Farmer, JD, Guido, DM, Foucher, F and Perry, R (2015b) Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15, 858–82.CrossRefGoogle ScholarPubMed
Campbell, KA, Sannazzaro, K, Rodgers, KA, Herdianita, NR and Browne, PRL (2001) Sedimentary facies and mineralogy of the Late Pleistocene Umukuri silica sinter, Taupo Volcanic Zone, New Zealand. Journal of Sedimentary Research 71, 728–47.CrossRefGoogle Scholar
Channing, A, Edwards, D and Sturtevant, S (2004) A geothermally influenced wetland containing unconsolidated geochemical sediments. Canadian Journal of Earth Sciences 41, 809–27.CrossRefGoogle Scholar
Des Marais, DJ and Walter, MR (2019) Terrestrial hot spring systems: introduction. Astrobiology. doi: 10.1089/AST.2018.1976.CrossRefGoogle Scholar
Djokic, T, Van Kranendonk, MJ, Campbell, KA, Walter, MR and Ward, CR (2017) Earliest signs of life on land in ca. 3.5 Ga terrestrial hot spring deposits. Nature Communications 8, 18.Google ScholarPubMed
Echeveste, H, Fernández, R, Bellieni, G, Tessone, M, Llambias, E, Schalamuk, I, Piccirillo, E and De Min, A (2001) Relaciones entre las Formaciones Bajo Pobre y Chon Aike (Jurásico medio a superior) en el área de Estancia El Fénix-Cerro Huemul, zona centro-occidental del Macizo del Deseado, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 56, 548–58.Google Scholar
Farmer, JD (2000) Hydrothermal systems: doorways to early biosphere evolution. GSA Today 10, 19.Google Scholar
Farmer, JD and Des Marais, DJ (1999) Exploring for a record of ancient Martian life. Journal of Geophysical Research 104, 26977–95.CrossRefGoogle ScholarPubMed
Fernández, R, Pérez, D, Moreira, P, Andrada, P, Albornoz, S and Penzo, H (2005) Exploración de la “zona de fractura Mogote Hormigas”, Prospecto La Josefina, Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina. 16° Congreso Geológico Argentino 2, 731–6.Google Scholar
Foucher, F, Guimbretiere, G, Bost, N and Westall, F (2017) Petrographical and mineralogical applications of Raman mapping. In Raman Spectroscopy and Applications (ed. Maaz, K), pp. 163–80. Rijeka: Intech.Google Scholar
Fournier, RO (1985) The behavior of silica in hydrothermal solutions. Reviews in Economic Geology 2, 4560.Google Scholar
García Massini, J, Escapa, I, Guido, D and Channing, A (2016) First glimpse of the silicified hot spring biota from a new Jurassic chert deposit in the Deseado Massif, Patagonia, Argentina. Ameghiniana 53, 205–30.CrossRefGoogle Scholar
García Massini, J, Escapa, I, Guido, D, Nunes, C, Savoretti, A and Bippus, A (2017) Biota y ambientes de un ecosistema geotérmico terrestre jurásico en una nueva localidad en el Macizo del Deseado, Santa Cruz, Argentina. Libro de Resúmenes de Reunión de Comunicaciones de la Asociación Paleontológica Argentina. Available at https://sites.google.com/view/racapa2017/res%C3%BAmenes Google Scholar
Gibson, RA, Talbot, HM, Kaur, G, Pancost, RD and Mountain, BW (2008) Bacteriohopanepolyol signatures of cyanobacterial and methanotrophic bacterial populations recorded in a geothermal vent sinter. Organic Geochemistry 39, 1020–3.CrossRefGoogle Scholar
Guido, D (2004) Subdivisión litofacial e interpretación del volcanismo jurásico (Grupo Bahía Laura) en el este del Macizo del Deseado, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 59, 727–42.Google Scholar
Guido, DM and Campbell, KA (2009) Jurassic hot-spring activity in a fluvial setting at La Marciana, Patagonia, Argentina. Geological Magazine 146, 617622.CrossRefGoogle Scholar
Guido, DM and Campbell, KA (2011) Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research 203, 3547.CrossRefGoogle Scholar
Guido, DM and Campbell, KA (2014) A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina. Journal of Volcanology and Geothermal Research 275, 6170.CrossRefGoogle Scholar
Guido, DM and Campbell, KA (2019a) Deseado Massif hot spring deposits (Late Jurassic, Patagonia, Argentina) and their association with epithermal systems. Mineral Systems of the Pacific Rim Congress, 3–5 April 2019, Auckland, New Zealand. Proceedings, pp. 301–3.Google Scholar
Guido, DM and Campbell, KA (2019b) Plastic silica conglomerate with an extremophile microbial matrix in a hot water stream paleoenvironment. Astrobiology.. doi: 10.1089/ast.2018.1998.CrossRefGoogle Scholar
Guido, DM, Channing, A, Campbell, KA and Zamuner, A (2010) Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina. Journal of the Geological Society, London 167, 1120.CrossRefGoogle Scholar
Hamilton, AR, Campbell, KA and Guido, DM (2019) Atlas of Siliceous Hot Spring Deposits (Sinter) and other Silicified Surface Manifestations in Epithermal Environments. Lower Hutt: GNS Science report 2019/06, 56 p. doi: 10.21420/BQDR-XQ16.Google Scholar
iMOST (co-chairs DW Beaty, MM Grady, HY McSween, E Sefton-Nash; documentarian BL Carrier; plus 66 co-authors) (2019). The potential science and engineering value of samples delivered to Earth by Mars sample return.. Meteoritics & Planetary Science 54, 667–71 (executive summary only), https://doi.org/10.1111/maps.13232; open access web link to full report (Meteoritics & Planetary Science 54, S3–S152): https://doi.org/10.1111/maps.13242.CrossRefGoogle Scholar
Jones, B and Renaut, RW (2003) Petrography and genesis of spicular and columnar geyserites from the Whakarewarewa and Orakeikorako geothermal areas, North Island, New Zealand. Canadian Journal of Earth Science 40, 1585–610.CrossRefGoogle Scholar
Jones, B, Renaut, RW and Rosen, MR (1997) Biogenicity of silica precipitation around geysers and hot spring vents, North Island, New Zealand. Journal of Sedimentary Research 67, 88104.Google Scholar
Jones, B, Renaut, RW and Rosen, MR (1998) Microbial biofacies in hot-spring sinters: a model based on Ohaaki Pool, North Island, New Zealand. Journal of Sedimentary Research 68, 413–34.CrossRefGoogle Scholar
Lynne, BY (2012) Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture. Geothermics 43, 324.CrossRefGoogle Scholar
Lynne, BY and Campbell, KA (2003) Diagenetic transformations (opal-A to quartz) of low- and mid-temperature microbial textures in siliceous hot-spring deposits, Taupo Volcanic Zone, New Zealand. Canadian Journal of Earth Sciences 40, 1679–96.CrossRefGoogle Scholar
Pankhurst, RJ, Riley, TR, Fanning, CM and Kelley, SP (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41, 605–25.CrossRefGoogle Scholar
Pentecost, A (2005) Travertine. Berlin: Springer.Google Scholar
Ruff, SW, Campbell, KA, Van Kranendonk, MJ, Rice, MS and Farmer, JD (in press) The case for ancient hot springs in Gusev crater, Mars. Astrobiology.Google Scholar
Ruff, SW and Farmer, JD (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications 7. doi: 10.1038/ncomms13554.CrossRefGoogle Scholar
Ruff, SW, Farmer, JD, Calvin, WM, Herkenhoff, KE, Johnson, JR, Morris, RV, Rice, MS, Arvidson, RE, Bell, JF, Christensen, PR and Squyres, SW(2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research: Planets 116, E00F23. doi: 10.1029/2010JE003767.CrossRefGoogle Scholar
Schalamuk, I, Zubia, M, Genini, A and Fernández, R (1997) Jurassic epithermal Au-Ag deposits of Patagonia, Argentina. Ore Geology Reviews 12, 173–86.CrossRefGoogle Scholar
Schinteie, R, Campbell, KA and Browne, PRL (2007) Microfacies of stromatolitic sinter from acid-sulphate-chloride springs at Parariki Stream, Rotokawa geothermal field, New Zealand. Palaeontologia Electronica 10, 4A, 33pp. Available at http://palaeo-electronica.org/paleo/2007_1/sinter/index.htm.Google Scholar
Sillitoe, RH (1993) Epithermal models: genetic types, geometrical controls and shallow features. In Mineral Deposits Modeling (eds Kirkham, RV, WD Sinclair, RI Thorpe and JM Duke), pp. 403–17. St John’s: Geological Association of Canada, Special Paper no. 40.Google Scholar
Trewin, NH (1994) Depositional environment and preservation of biota in the Lower Devonian hot-springs of Rhynie, Aberdeenshire, Scotland. Royal Society of Edinburgh, Transactions, Earth Sciences 84, 433–42.CrossRefGoogle Scholar
Trewin, NH (1996) The Rhynie Chert: an early Devonian ecosystem preserved by hydrothermal activity. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?): Proceedings of the CIBA Foundation Symposium No. 202 (eds Bock, GR and Goode, JA), pp. 131–49. Chichester: Wiley.Google Scholar
Trzcinski, BH, Humayun, M, Gibbons, JA, Zanda, B, Colas, F, Egal, A, Maquet, L, Reich, M and Sanchez Yañez, C (2018) The sources of titanium in siliceous sinters from Chilean hot springs: implications for Martian silica. 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas, USA, abstract # 1271. Available at https://www.hou.usra.edu/meetings/lpsc2018/pdf/1271.pdf.Google Scholar
Van Kranendonk, MJ, Campbell, KA, Barlow, EV, Baumgartner, R, Djokic, T, Duda, GP and Teece, B(2019) A pyramid of life detection for ancient life, based on deep-time Earth experience. Astrobiology Science Conference 2019, Abs. #342–355. Available at https://agu.confex.com/agu/abscicon19/meetingapp.cgi/Paper/483031 Google Scholar
Walter, MR (1976) Hot-spring sediments of Yellowstone National Park. In Stromatolites (ed. Walter, MR), pp. 489–98. Amsterdam: Elsevier, Developments in Sedimentology, vol. 20.CrossRefGoogle Scholar
Walter, MR and Des Marais, DJ (1993) Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus 101, 129–43.CrossRefGoogle ScholarPubMed
Walter, MR, Des Marais, D, Farmer, JD and Hinman, NW (1996) Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia. Palaios 11, 497–518.CrossRefGoogle ScholarPubMed
Westall, F, Campbell, KA, Breheret, JG, Foucher, F, Gautret, P, Hubert, A, Sorieul, S, Grassineau, N and Guido, DM (2015) Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology 43, 615–18.CrossRefGoogle Scholar
Westall, F, Hickman-Lewis, K, Hinman, N, Gautret, P, Campbell, KA, Bréhéret, JG and Brack, A (2018) A hydrothermal-sedimentary context for the origin of life. Astrobiology 18, 259–93.CrossRefGoogle ScholarPubMed
Supplementary material: File

Guido et al. supplementary material

Figures S1-S3

Download Guido et al. supplementary material(File)
File 2.1 MB