Skip to main content
×
×
Home

DEGREE CONES AND MONOMIAL BASES OF LIE ALGEBRAS AND QUANTUM GROUPS

  • TEODOR BACKHAUS (a1), XIN FANG (a1) and GHISLAIN FOURIER (a2) (a3)
Abstract

We provide ℕ-filtrations on the negative part Uq ( $\mathfrak{n}$ ) of the quantum group associated to a finite-dimensional simple Lie algebra $\mathfrak{g}$ , such that the associated graded algebra is a skew-polynomial algebra on $\mathfrak{n}$ . The filtration is obtained by assigning degrees to Lusztig's quantum PBW root vectors. The possible degrees can be described as lattice points in certain polyhedral cones. In the classical limit, such a degree induces an ℕ-filtration on any finite-dimensional simple $\mathfrak{g}$ -module. We prove for type An, Cn, B3, D4 and G2 that a degree can be chosen such that the associated graded modules are defined by monomial ideals, and conjecture that this is true for any $\mathfrak{g}$ .

Copyright
References
Hide All
1. Backhaus, T. and Desczyk, C., PBW filtration: Feigin-Fourier-Littelmann modules via Hasse diagrams, J. Lie Theory 25 (3) (2015), 815856.
2. Backhaus, T. and Kus, D., The PBW filtration and convex polytopes in type B, to appear in Math. Z, arXiv:1504.06522.
3. Berenstein, A. and Zelevinsky, A., Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143 (1) (2001), 77128.
4. Cerulli Irelli, G., Fang, X., Feigin, E., Fourier, G. and Reineke, M., Linear degenerations of flag varieties, arXiv:1603.08395.
5. Fang, X. and Fourier, G., Marked chain-order polytopes and string polytopes, Eur. J. Comb. 58 (November 2016), 267282.
6. Fang, X., Fourier, G. and Littelmann, P., Essential bases and toric degenerations arising from generating sequences, to appear in Adv. Math, arXiv:1510.02295.
7. Fang, X., Fourier, G. and Reineke, M., PBW-Filtration on quantum groups of type An , J. Algebra 449 (2016), 321345.
8. Feigin, E., Fourier, G. and Littelmann, P., PBW filtration and bases for irreducible modules in type A n , Transform. Groups 16 (1) (2011), 7189.
9. Feigin, E., Fourier, G. and Littelmann, P., PBW filtration and bases for symplectic Lie algebras, Int. Math. Res. Not. IMRN 24 (2011), 57605784.
10. Feigin, E., Fourier, G. and Littelmann, P., Favourable modules: Filtrations, polytopes, Newton-Okounkov bodies and flat degenerations, Transform. Groups, 2016, DOI: 10.1007/S00031-016-9389-2.
11. Gawrilow, E. and Joswig, M., Polymake: A framework for analyzing convex polytopes. Polytopes – combinatorics and computation (Oberwolfach, 1997), DMV Sem., 29 (Birkhäuser, Basel, 2000), 4373.
12. Gornitskii, A. A., Essential signatures and canonical bases of irreducible representations of the group G 2 , Math. Notes 97 (1) (2015), 3041.
13. Gornitskii, A. A., Essential signatures and canonical bases of irreducible representations of D 4, preprint, arXiv:1507.07498.
14. Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465516.
15. Kiritchenko, V., Geometric mitosis, Math. Res. Lett. 23 (4) (2016), 10691096.
16. Kiritchenko, V., Newton–Okounkov polytopes of flag varieties, to appear in Transform. Groups, DOI:10.1007/s00031-016-9372-y.
17. Littelmann, P., Cones, crystals, and patterns, Transform. Groups 3 (2) (1998), 145179.
18. Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (2) (1990), 447498.
19. Lusztig, G., Introduction to quantum groups. Reprint of the 1994 edition. Modern Birkhäuser Classics (Birkhäuser/Springer, New York, 2010).
20. Papi, P., A characterization of a special ordering in a root system. Proc. Amer. Math. Soc. 120 (3) (1994), 661665.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed