Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T06:02:37.124Z Has data issue: false hasContentIssue false

Applications of Molecular Methods to Epidemiologic Investigations of Nosocomial Infections in a Pediatric Hospital

Published online by Cambridge University Press:  02 January 2015

Edouard Bingen*
Affiliation:
Laboratoire de Microbiologie, Hôpital Robert Debré, Paris, France
*
Laboratoire de Microbiologie, Hôpital Robert Debré, 48 Bd Serurier, 75935 Paris Cedex 19, France

Abstract

Molecular typing methods are highly discriminatory for strains that cannot be separated by phenotypic methods. They are especially suited to monitoring outbreaks in children's hospitals. In many cases, molecular typing has improved the understanding of the mechanism of nosocomial acquisition of organisms by allowing distinction between endogenous and exogenous infections. Among exogenous infections, it has distinguished between individual and epidemic strains, thus differentiating cross-infection from independent acquisition.

Type
From the Third International Conference on the Prevention of Infection
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ford-Jones, ELMindorff, CM, Langley, JM, et al.Epidemiologic study of 4684 hospital-acquired infections in pediatric patients. Pediatr Infect Dis J 1989;8:668675.Google Scholar
2.Maslow, JN, Mulligan, ME, Arbeit, RD. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 1993;17:153164.Google Scholar
3.Grimont, PAD, Grimont, F. Biotyping of Serratia marcescens and its use in epidemiological studies. J Clin Microbiol 1978;8:7383.Google Scholar
4.Richard, C. Bacteriologie et épidémiologie des espèces du genre Klebsiella. Bull Inst Pasteur 1982;80:127145.Google Scholar
5.Audurier, A, Taylor, AG, Carbonelle, B, McLauchlin, J. A phage typing system for Listeria monocytogens, and its use in epidemiological studies. Clin Invest Med 1984;7:229232.Google Scholar
6.Hall, SM, Crafts, N, Gilbert, RJ, Pini, PN, Taylor, AG, McLaughlin, J. Epidemiology of listeriosis, England and Wales. Lancet 1988;II:502503.Google Scholar
7.Loessner, MJ, Brusse, M. Bacteriophage typing of Listeria species. Appl Environ Microbiol 1989;56:19121918.Google Scholar
8.Le Minor, L. Lysogéni et classification de Salmonella. Int J Syst Bact 1968;18:197201.Google Scholar
9.Selander, RK. Caugant, DA, Ochman, H, Musser, JM, Gilmour, MN, Whittam, TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 1986;51:873884.Google Scholar
10.Arthur, M, Arbeit, RD, Kim, C, et al.Restriction fragment length polymorphism among uropathogenic Escherichia coli isolates: pap-related sequences compared with rrn operons. Infect Immun 1990;58:471479.Google Scholar
11.Patton, CM, Wachsmuth, IK, Evins, GM, et al.Evaluation of ten methods to distinguish epidemic-associated Campylobacter strains. J Clin Microbiol 1991;29:80688.Google Scholar
12.Picard-Pasquier, N. Picard, B, Heeralal, S, Krishnamoorthy, R, Goulet, P. Correlation between ribosomal DNA polymorphism and electrophoretic enzyme polymorphism in Yersinia. J Gen Microbiol 1990;136:16551666.Google Scholar
13.Woods, T, Helsel, LO, Swaminathan, B, et al.Characterization of Neisseria meningitidis serogroup C by multilocus enzyme electrophoresis and ribosomal DNA restriction profiles (ribotyping). J Clin Microbiol 1992;30:132137.Google Scholar
14.Denamur, E, Picard, B, Goullet, PH, Bingen, E, Lambert, N, Elion, J. Complexity of Pseudomonas aeruginosa infection in cystic fibrosis: combined results from esterase electrophoresis and rDNA restriction fragment length polymorphism analysis. Epidemiol Infect 1991;106:531539.Google Scholar
15.Schaberg, DR, Tompkins, LS, Falkow, S. Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli. J Clin Microbiol 1981;13:11051108.Google Scholar
16.Muytjens, HJ, Zanen, HC. Sonderkamp, HJ, Kollee, LA, Wachsmuth, IK, Farmer, JJ IIIAnalysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J Clin Microbiol 1983;18:115120.Google Scholar
17.John, JF, Sharbaugh, RJ, Bannister, ER. Enterobacter cloacae: bacteremia, epidemiology, and antibiotic resistance. Rev Infect Dis 1982;4:1328.Google Scholar
18.Renaud, F, Ploton, C. Etienne, J, et al.Intérêt des marqueurs moléculaires dans les etudes épidémiologiques: application au cas d'une infection multiple à Staphylococus epidermidis. Méd Mal Infect 1991;21:322325.Google Scholar
19.Brunner, F, Margadant, A, Peduzzi, R, Piffaretti, J. The plasmid pattern as an epidemiologic tool for Salmonella typhimurium epidemics: comparison with the lysotype. J Infect Dis 1983;148:711.Google Scholar
20.Kapperud, G, Gustavsen, S, Hellesnes, I, et al.Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J Clin Microbiol 1990;28:25972601.Google Scholar
21.Holmberg, SD, Wachsmuth, IK, Hickman-Brenner, FW, Blake, PA, Cohen, ML. Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium isolates from outbreaks. J Clin Microbiol 1981;19:100104.Google Scholar
22.O'Brien, TF, Ross, DG, Guzman, MA, Medeiros, AA, Hedges, RW, Bostein, D. Dissemination of an antibiotic resistance plasmid in hospital patient flora. Antimicrob Agents Chemother 1980:17:537543.Google Scholar
23.Owen, RJ. Chromosomal DNA fingerprinting-a new method of species and strain identification applicable to microbial pathogens. J Med Microbiol 1989;30:8999.Google Scholar
24.Bingen, E. Denamur, E, Lambert-Zechovsky, N, et al.Mother-to-infant vertical transmission and cross-colonization of Streptococcus pyogenes confirmed by DNA restriction fragment length polymorphism analysis. J Znfect Dis 1992;165:147150.Google Scholar
25.Bingen, E, Denamur, E, Lambert-Zechovsky, N, Elion, J. Evidence for the genetic unrelatedness of nosocomial vancomycin-resistant Enterococcus faecium strains in a pediatric hospital. J Clin Microbiol 1991;29:18881892.Google Scholar
26.Goering, RV. Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction fragment patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol 1993;14:595600.Google Scholar
27.Boukadida, J, De Montalembert, M, Gaillard, JL, et al.Outbreak of gut colonization by Pseudomonas aeruginosa in immunocompromised children undergoing total digestive decontamination: analysis by pulsed-field electrophoresis. J Clin Microbiol 1991;29:20682071.Google Scholar
28.Godard, C, Leroy, J, Michel-Briand, Y. Characterization of imipenem-resistant Pseudomonas aeruginosa strains from cystic fibrosis patients. J Antimicrob Chemother 1992;30:721724.Google Scholar
29.Grothues, D, Koopmann, U, Von Der Hardt, H, Tummler, B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988;26:19731977.Google Scholar
30.Miranda, AG, Singh, KV, Mm-ray, BE. DNA fingerprinting of Enterococcus faecium by pulsed-field gel electrophoresis may be a useful epidemiologic tool. J Clin Microbiol 1991:29:27522757.Google Scholar
31.Schlichting, C, Branger, C, Fournier, JM. et al.Typing of Staphylococcus aureus by pulsed-field gel electrophoresis, zymotyping, capsular typing, and phage typing: resolution of clonal relatonships. J Clin Microbiol 1993;31:227232.Google Scholar
32.Tummler, B, Koopmann, U, Grothues, D, Weissbrodt, H, Steinkamp, G, Von Der Hardt, H. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 1991;29:12651267.Google Scholar
33.Prevost, G, Jaulhac, B, Piemont, Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among Methicillin-resistant Staphylococcus aureus isolates. J Clln Microbiol 1992;30:967973.Google Scholar
34.Salvers, AA, Lynn, SP, Gardner, JF. Use of randomly cloned DNA fragments for identification of Bacteroïdes thethaiotaomicron. J Bacteriol 1983;154:287293.Google Scholar
35.Tompkims, LS, Troup, N, Labigne-Roussel, A, Cohen, ML. Cloned random chromosomal sequences as probe to identify Salmonella species. J Infect Dis 1986;154:156162.Google Scholar
36.Samadpour, M, Moseley, SL, Lory, S. Biotinylated DNA probes for exotoxin A and pilin genes in the differentiation of Pseudomonas aeruginosa strains. J Clin Microbiol 1988;26:23192323.Google Scholar
37.Rappuoli, R, Perugini, M, Ratti, G. DNA element of Corynebacterium diphteriae with properties of an insertion sequence and usefulness for epidemiological studies. J Bacteriol 1987;169:308312.Google Scholar
38.Van Sooligen, D, Hermans, PW, De Haas, PE. Soll, DR, Van Embden, JDA. Occurence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 1991;29:25782586.Google Scholar
39.Grimont, F, Grimont, PAD. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur/Microbiol (Paris) 1986;137B:165175.Google Scholar
40.Irino, K, Grimont, F, Casin, I. Grimont PAD and the brazilian purpuric fever study group. t-RNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains-associated with Brazilian purpuric fever. J Clin Microbiol 1988:26:15351538.Google Scholar
41.Sarafian, SK, Woods, TC, Knapp, JS, Swaminathan, B. Morse, SA. Molecular characterization of Haemophilus ducreyi by ribosomal DNA fingerprinting. J Clin Microbiol 1991;29:19491954.Google Scholar
42.Altwegg, M, Hickmann-Brenner, FW, Farmeriii, JJ. Rihosomal RNA gene restriction patterns provide increased sensitivity for typing Salmonella typhi strains. J Infect Dis 1989;160:145149.Google Scholar
43.Koblavi, S, Grimont, F, Grimont, PAD. Clonal diversity of Vibrio cholerae 01 evidenced by rRNA gene restriction patterns. Res Microbiol 1990;141:645657.Google Scholar
44.Perolat, P, Grimont, F, Regnault, B, et al.rRNA gene restriction patterns of Leptospira: a molecular typing system. Res Microbiol 1990;141:159171.Google Scholar
45.Bingen, E, Denamur, E, Lambert-Zechovsky, N, et al.DNA restriction fragment length polymorphism differentiates crossed from independent infections in nosocomial Xanthomonas maltophilia bacteremia. J Clin Microbiol 1991;29:13481350.Google Scholar
46.Bingen, E, Denamur, E, Picard, B, et al.Molecular epidemiological analysis of Pseudomonas aeruginosa strains causing failure of antibiotic therapy in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 1992;11:432437.Google Scholar
47.Bingen, E, Cave, H, Aujard, Y, et al.Molecular analysis of multiply recurrent meningitis due to Escherichia coli K1 in an infant. Clin Infect Dis 1993;16:8285.Google Scholar
48.Bingen, E, Denamur, E, Lambert-Zechovsky, N, Brahimi, N, El Lakany, M, Elion, J. Rapid genotyping shows the absence of cross-contamination in Enterobacter cloacae nosocomial infections. J Hosp Infect 1992;21:95101.Google Scholar
49.Gerner-Smidt, P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol 1992;30:26802685.Google Scholar
50.Lipuma, JJ, Mortensen, JE, Dasen, SE, et al.Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 1988;113:859862.Google Scholar
51.Sexton, MM, Goebel, LA, Godfrey, AJ, Choawagul, W, White, NJ, Woods, DE. Ribotype analysis of Pseudomonas pseudomallei isolates. J Clin Microbiol 1993;31:238243.Google Scholar
52.Bingen, E, Denamur, E, Lambed-Zechovsky, N, et al.Analysis of DNA restriction fragment length polymorphism extends the evidence for breast milk late-onset neonatal infection. J Infect Dis 1992;165:569573.Google Scholar
53.Poh, CL, Yeo, CC, Tay, L. Genome fingerprinting by pulsed-field gel electrophoresis and ribotyping to differentiate Pseudomonas aeruginosa serotype 011 strains. Eur J Clin Microbiol Infect Dis 1992;11:817822.Google Scholar
54.Anderson, DJ. Kuhns, JS, Vasil, ML, Gerding, DN, Janoff, EN. DNA fingerprinting by pulsed field-gel electrophoresis and ribotyping to distinguish Pseudomonas cepacia isolates from a nosocomial outbreak. J Clin Microbiol 1991;29:648649.Google Scholar
55.Tompkims, IS. The use of molecular methods in infectious diseases. New Engl J Med 1992;18:12901292.Google Scholar
56.Welsh, J, McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990;18:72137218.Google Scholar
57.Williams, JGK, Kubelik, AR, Livak, KJ, Rafalski, JA, Tingey, SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990;18:65316535.Google Scholar
58.Bingen, E, Boissinot, C, Desjardins, P, et al.Arbitrarily-primed PCR provides rapid differentiation of Proteus mirabilis isolates in a pediatric hospital. J Clin Microbiol 1993;31:10551059.Google Scholar
59.Dutka-Malen, S, Leclercq, R, Coutant, V, Duval, J, Courvalin, F! Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrobiol Agents Chemother 1990;34:18751879.Google Scholar
60.Leclercq, R, Derlot, E, Weber, M, Duval, J, Courvalin, P. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 1989;33:1015.Google Scholar
61.Bingen, E, Desjardins, P, Arlet, G, et al.Molecular epidemiology of plasmid spread among extended broad-spectrum β-lactamase producing Klebsiella pneumoniae in a pediatric hospital. J Clin Microbiol 1993;31:179184.Google Scholar