Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T12:30:42.264Z Has data issue: false hasContentIssue false

The impact of minimally invasive surgical approaches on surgical-site infections

Published online by Cambridge University Press:  03 January 2024

Stephanie F. Sweitzer*
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Emily E. Sickbert-Bennett
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Infection Prevention, University of North Carolina Hospitals, Chapel Hill, North Carolina
Jessica Seidelman
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
Deverick J. Anderson
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
Moe R. Lim
Affiliation:
Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina
David J. Weber
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Infection Prevention, University of North Carolina Hospitals, Chapel Hill, North Carolina
*
Corresponding author: Stephanie F. Sweitzer; Email: Stephanie.Sweitzer@unchealth.unc.edu

Abstract

We performed a literature review to describe the risk of surgical-site infection (SSI) in minimally invasive surgery (MIS) compared to standard open surgery. Most studies reported decreased SSI rates among patients undergoing MIS compared to open procedures. However, many were observational studies and may have been affected by selection bias. MIS is associated with reduced risk of surgical-site infection compared to standard open surgery and should be considered when feasible.

Type
Commentary
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Horan, TC, Gaynes, RP, Martone, WJ, Jarvis, WR, Emori, TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Am J Infect Control 1992;20:271274.10.1016/S0196-6553(05)80201-9CrossRefGoogle ScholarPubMed
Berríos-Torres, SI, Umscheid, CA, Bratzler, DW, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical-site infection, 2017. JAMA Surg 2017;152:784791.10.1001/jamasurg.2017.0904CrossRefGoogle Scholar
National Health and Safety Network. 2021 National and State Healthcare-Associated Infections Progress Report. Centers for Disease Control and Prevention website. https://arpsp.cdc.gov/profile/national-progress-44/united-states. Published 2022. Accessed December 15, 2023Google Scholar
Seidelman, JL, Baker, AW, Lewis, SS, et al. Surgical site infection trends in community hospitals from 2013 to 2018. Infect Control Hosp Epidemiol 2023;44:610615.10.1017/ice.2022.135CrossRefGoogle ScholarPubMed
Zimlichman, E, Henderson, D, Tamir, O, et al. Healthcare-associated infections: a meta-analysis of costs and financial impact on the US healthcare system. JAMA Intern Med 2013;173:20392046.10.1001/jamainternmed.2013.9763CrossRefGoogle Scholar
Engemann, JJ, Carmeli, Y, Cosgrove, SE, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical-site infection. Clin Infect Dis 2003;36:592598.10.1086/367653CrossRefGoogle ScholarPubMed
Kirkland, KB, Briggs, JP, Trivette, SL, Wilkinson, WE, Sexton, DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 1999;20:725730.10.1086/501572CrossRefGoogle ScholarPubMed
Scott, R. The direct medical costs of healthcare-associated infections in US hospitals and the benefits of prevention. Centers for Disease Control and Prevention website. https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf. Published 2009. Accessed December 15, 2023.Google Scholar
Calderwood, MS, Anderson, DJ, Bratzler, DW, et al. Strategies to prevent surgical site infections in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol 2023;44:695720.10.1017/ice.2023.67CrossRefGoogle ScholarPubMed
Meeks, DW, Lally, KP, Carrick, MM, et al. Compliance with guidelines to prevent surgical site infections: as simple as 1-2-3? Am J Surg 2011;201:7683.10.1016/j.amjsurg.2009.07.050CrossRefGoogle ScholarPubMed
Umscheid, CA, Mitchell, MD, Doshi, JA, Agarwal, R, Williams, K, Brennan, PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 2011;32:101114.10.1086/657912CrossRefGoogle ScholarPubMed
Jaffray, B. Minimally invasive surgery. Arch Dis Child 2005;90:537542.10.1136/adc.2004.062760CrossRefGoogle ScholarPubMed
Gandaglia, G, Ghani, KR, Sood, A, et al. Effect of minimally invasive surgery on the risk for surgical site infections: results from the National Surgical Quality Improvement Program (NSQIP) Database. JAMA Surg 2014;149:10391044.10.1001/jamasurg.2014.292CrossRefGoogle ScholarPubMed
Tollefson, MK, Frank, I, Gettman, MT. Robotic-assisted radical prostatectomy decreases the incidence and morbidity of surgical-site infections. Urology 2011;78:827831.10.1016/j.urology.2011.05.037CrossRefGoogle ScholarPubMed
Dobson, M, Geisler, D, Fazio, V, Razio, F, Hull, T, Vogel, J. Minimally invasive surgical wound infections: laparoscopic surgery decreases morbidity of surgical site infections and decreases the cost of wound care. Colorectal Dis 2011;13:811815.10.1111/j.1463-1318.2010.02302.xCrossRefGoogle ScholarPubMed
Varela, JE, Wilson, SE, Nguyen, NT. Laparoscopic surgery significantly reduces surgical-site infections compared with open surgery. Surg Endosc 2010;24:270276.10.1007/s00464-009-0569-1CrossRefGoogle ScholarPubMed
Tuggle, KRM, Ortega, G, Bolorunduro, OB, et al. Laparoscopic versus open appendectomy in complicated appendicitis: a review of the NSQIP database. J Surg Res 2010;163:225228.10.1016/j.jss.2010.03.071CrossRefGoogle ScholarPubMed
Ramamurti, P, Agarwal, AR, Gu, A, et al. Increased risk of 90-day surgical-site infection and hospital readmission but not reoperation after open arthrotomy when compared with arthroscopy for septic ankle arthritis. Arthrosc J Arthrosc Relat Surg 2022;38:19992006.10.1016/j.arthro.2022.01.022CrossRefGoogle Scholar
Hoffman, T, Shitrit, P, Chowers, M. Risk factors for surgical site infections following open versus laparoscopic colectomies: a cohort study. BMC Surg 2021;21:376.10.1186/s12893-021-01379-wCrossRefGoogle ScholarPubMed
Matsukuma, S, Tokumitsu, Y, Nakagami, Y, et al. Laparoscopic resection reduces superficial surgical site infection in liver surgery. Surg Endosc 2021;35:71317141.10.1007/s00464-020-08233-9CrossRefGoogle ScholarPubMed
Arnold, M, Elhage, S, Schiffern, L, et al. Use of minimally invasive surgery in emergency general surgery procedures. Surg Endosc 2020;34:22582265.10.1007/s00464-019-07016-1CrossRefGoogle ScholarPubMed
Alkaaki, A, Al-Radi, OO, Khoja, A, et al. Surgical site infection following abdominal surgery: a prospective cohort study. Can J Surg J Can Chir 2019;62:111117.CrossRefGoogle ScholarPubMed
Caroff, DA, Chan, C, Kleinman, K, et al. Association of open approach vs laparoscopic approach with risk of surgical site infection after colon surgery. JAMA Netw Open 2019;2:e1913570.CrossRefGoogle ScholarPubMed
McCracken, EKE, Mureebe, L, Blazer, DG. Minimally invasive surgical-site infection in procedure-targeted ACS NSQIP pancreaticoduodenectomies. J Surg Res 2019;233:183191.CrossRefGoogle ScholarPubMed
Mueller, K, Zhao, D, Johnson, O, Sandhu, FA, Voyadzis, JM. The difference in surgical-site infection rates between open and minimally invasive spine surgery for degenerative lumbar pathology: a retrospective single center experience of 1,442 cases. Oper Neurosurg 2019;16:750755.10.1093/ons/opy221CrossRefGoogle Scholar
Ali, R, Anwar, M, Akhtar, J. Laparoscopic versus open appendectomy in children: a randomized controlled trial from a developing country. J Pediatr Surg 2018;53:247249.CrossRefGoogle ScholarPubMed
Yu, G, Han, A, Wang, W. Comparison of laparoscopic appendectomy with open appendectomy in treating children with appendicitis. Pak J Med Sci 2016;32:299304.Google ScholarPubMed
Colling, KP, Glover, JK, Statz, CA, Geller, MA, Beilman, GJ. Abdominal hysterectomy: reduced risk of surgical-site infection associated with robotic and laparoscopic technique. Surg Infect 2015;16:498503.10.1089/sur.2014.203CrossRefGoogle ScholarPubMed
Pasam, RT, Esemuede, IO, Lee-Kong, SA, Kiran, RP. The minimally invasive approach is associated with reduced surgical site infections in obese patients undergoing proctectomy. Tech Coloproctology 2015;19:733743.10.1007/s10151-015-1356-8CrossRefGoogle ScholarPubMed
Mahdi, H, Gojayev, A, Buechel, M, et al. Surgical site infection in women undergoing surgery for gynecologic cancer. Int J Gynecol Cancer 2014;24:779786.10.1097/IGC.0000000000000126CrossRefGoogle ScholarPubMed
Howard, DPJ, Datta, G, Cunnick, G, Gatzen, C, Huang, A. Surgical site infection rate is lower in laparoscopic than open colorectal surgery. Colorectal Dis 2010;12:423427.10.1111/j.1463-1318.2009.01817.xCrossRefGoogle ScholarPubMed
Romy, S, Eisenring, MC, Bettschart, V, Petignat, C, Francioli, P, Troillet, N. Laparoscope use and surgical-site infections in digestive surgery. Ann Surg 2008;247:627632.10.1097/SLA.0b013e3181638609CrossRefGoogle ScholarPubMed
St Peter, SD, Holcomb, GW, Calkins, CM, et al. Open versus laparoscopic pyloromyotomy for pyloric stenosis: a prospective, randomized trial. Ann Surg 2006;244.Google ScholarPubMed
Wang, Z, Chen, J, Wang, P, et al. Surgical-site infection after gastrointestinal surgery in China: a multicenter prospective study. J Surg Res 2019;240:206218.10.1016/j.jss.2019.03.017CrossRefGoogle Scholar
Xiao, Y, Shi, G, Zhang, J, et al. Surgical-site infection after laparoscopic and open appendectomy: a multicenter large consecutive cohort study. Surg Endosc 2015;29:13841393.10.1007/s00464-014-3809-yCrossRefGoogle ScholarPubMed
Aimaq, R, Akopian, G, Kaufman, HS. Surgical-site infection rates in laparoscopic versus open colorectal surgery. Am Surg 2011;77:12901294.CrossRefGoogle ScholarPubMed
Kaafarani, HMA, Kaufman, D, Reda, D, Itani, KMF. Predictors of surgical-site infection in laparoscopic and open ventral incisional herniorrhaphy. J Surg Res 2010;163:229234.10.1016/j.jss.2010.03.019CrossRefGoogle ScholarPubMed
Nguyen, NT, Lee, S, Goldman, C, et al. Comparison of pulmonary function and postoperative pain after laparoscopic versus open gastric bypass: a randomized trial. J Am Coll Surg 2001;192:469476.CrossRefGoogle ScholarPubMed
Nguyen, N, Lee, S, Anderson, J, Palmer, L, Canet, F, Wolfe, B. Evaluation of intra-abdominal pressure after laparoscopic and open gastric bypass. Obes Surg 2001;11:4045.CrossRefGoogle ScholarPubMed
Nguyen, NT, Goldman, CD, Ho, HS, Gosselin, RC, Singh, A, Wolfe, BM. Systemic stress response after laparoscopic and open gastric bypass. J Am Coll Surg 2002;194:557566.CrossRefGoogle ScholarPubMed
Wichmann, MW, Huttl, TP, Winter, H, et al. Immunological effects of laparoscopic vs open colorectal surgery: a prospective clinical study. Arch Surg 2005;140:692697.10.1001/archsurg.140.7.692CrossRefGoogle ScholarPubMed
Whelan, R, Franklin, M, Holubar, S, et al. Postoperative cell mediated immune response is better preserved after laparoscopic vs open colorectal resection in humans. Surg Endosc 2003;17:972978.CrossRefGoogle ScholarPubMed
Zhao, Z, Gu, J. Open surgery in the era of minimally invasive surgery. Chin J Cancer Res 2022;34:6365.10.21147/j.issn.1000-9604.2022.01.06CrossRefGoogle ScholarPubMed