Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:40:23.670Z Has data issue: false hasContentIssue false

Efficacy and persistence of Metarhizium acridum (Hypocreales: Clavicipitaceae) used against desert locust larvae, Schistocerca gregaria (Orthoptera: Acrididae), under different vegetation cover types

Published online by Cambridge University Press:  29 May 2014

Mohamed Ould Atheimine*
Affiliation:
Centre National de Lutte Antiacridienne, BP 665, Nouakchott, Mauritanie
Magzoub Omer Bashir
Affiliation:
Faculty of Agriculture, University of Khartoum, Shambat, Sudan
Sidi Ould Ely
Affiliation:
Centre National de Lutte Antiacridienne, BP 665, Nouakchott, Mauritanie
Cherif Mohamed Habib Kane
Affiliation:
Centre National de Lutte Antiacridienne, BP 665, Nouakchott, Mauritanie
Sid' Ahmed Ould Mohamed
Affiliation:
Centre National de Lutte Antiacridienne, BP 665, Nouakchott, Mauritanie
Mohamed Abdallahi Ould Babah
Affiliation:
Centre National de Lutte Antiacridienne, BP 665, Nouakchott, Mauritanie
Mounsif Benchekroun
Affiliation:
Laboratoire Agro-alimentaire et santé, Université Hassan 1er, Faculté des Sciences et Techniques, BP 577, Settat2600, Maroc
Get access

Abstract

The effect of vegetation cover (millet) on the efficacy and conidial persistence of Metarhizium acridum (Driver & Milner) J.F. Bisch., Rehner & Humber was evaluated in semi-field conditions using breeding cages (2 × 2 × 1 m). A mixed population of third- and fourth-instar desert locust larvae, Schistocerca gregaria Forsskål, was used as a target. The insects were exposed in two different vegetation cover types classified as low (about 10%) and high (about 90%). Metarhizium acridum was used at a dose of 2.5 × 1012 conidia/ha in two different application volumes: 1 and 2 l/ha. Untreated insects kept in contact with treated vegetation were monitored to evaluate the persistence of conidia. The results showed that vegetation cover did not significantly (F= 1.320; P= 0.334) affect the efficacy of M. acridum. Under the high vegetation cover, the increase in the applied volume rate to 2 l/ha significantly improved the speed of mortality. Conidia persisted 6 days after treatment with a remarkable effect on untreated larvae exposed to the treated vegetation. In addition, the results of this study showed the efficacy of M. acridum in the low vegetation cover. With an important mass of vegetation, M. acridum conidia could persist even under high temperature conditions.

Type
Research Papers
Copyright
Copyright © ICIPE 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Arthurs, S., Thomas, M. B. and Lawton, J. L. (2001) Seasonal patterns of persistence and infectivity of Metarhizium anisopliae var. acridum in grasshopper cadavers in the Sahel. Entomologia Experimentalis et Applicata 100, 6976.CrossRefGoogle Scholar
Bateman, R. P., Carey, M., Moore, D. and Priore, C. (1993) Oil formulations of entomopathogenic fungi infect desert locusts at low humidities. Annals of Applied Biology 122, 145152.CrossRefGoogle Scholar
Bateman, R. P., Douro-Kpindo, O. K., Kooyman, C., Lomer, C. and Ouambama, Z. (1998) Some observations on the dose transfer of mycoinsecticide sprays to desert locust. Crop Protection 17, 151158.CrossRefGoogle Scholar
Bischoff, J. F., Stephen, A. R. and Richard, A. H. (2009) A multilocust phylogeny of Metarhizium acridum lineage. Mycologia 101, 512530. doi:10.3852/07-202.CrossRefGoogle Scholar
Blanford, S. and Klass, J. (2004) Review of environment effects on the performance of Metarhizium anisopliae var. acridum against locusts under field conditions. In Report for the Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases (EMPRES). Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Blanford, S., Thomas, M. B. and Langewald, J. (1998) Behavioural fever in the Senegalese grasshopper, Oedaleus senegalensis and its implications for biological control using pathogens. Ecological Entomology 23, 914.CrossRefGoogle Scholar
Culmsee, F. H. (2002) The habitat functions of vegetation in relation to the behaviour of the desert locust Schistocerca gregaria (Forskål) (Acrididae: Orthoptera) – a study in Mauritania (West Africa). Phytocoenologia 32, 645664.CrossRefGoogle Scholar
Despland, E., Collett, M. and Simpson, S. J. (2000) Small-scale processes in desert locust swarm formation: how vegetation patterns influence gregarization. Oikos 88, 652662.CrossRefGoogle Scholar
Despland, E. and Simpson, S. J. (2000) Small-scale vegetation patterns in the parental environment influence the phase state of hatchlings of the desert locust. Physiological Entomology 25, 7481.CrossRefGoogle Scholar
Douro-Kpindou, O. K., Gbongboui, C., Badou, R., Paa-Kwessi, E., Ackonor, J. B. and Langewald, J. (2005) Optimisation de l'application du Metarhizium anisopliae var. acridum sur le criquet puant (Zonocerus variegatus, Orthoptera: Pyrgomorphidae). International Journal of Tropical Insect Science 25, 251258.Google Scholar
Douro-Kpindou, O. K., Godonou, I., Houssou, A., Lomer, C. J. and Shah, P. A. (1995) Control of Zonocerus variegatus by ultra-low volume application of an oil formulation of Metarhizium anisopliae var. acridum. Biocontrol Science and Technology 5, 131139.CrossRefGoogle Scholar
FAO [Food and Agriculture Organization of the United Nations] (2001) Report of the Expert Consultation and Risk Assessment on the Importation and Large-Scale Use of Mycopesticides against Locusts, 2–7 December 2001. FAO, Rome.Google Scholar
FAO [Food and Agriculture Organization of the United Nations] (2004) Evaluation des données d'essais de terrain sur l'efficacité et la sélectivité des insecticides sur les criquets et les sauteriaux. In Rapport à la FAO du groupe consultatif sur les pesticides, 18–21 October 2004, 9ième réunion Rome. FAO, Rome.Google Scholar
Kassa, A., Stephan, D., Vidam, S. and Zimmermann, G. (2004) Laboratory and field evaluation of different formulations of Metarhizium anisopliae var. acridum submerged spores and aerial conidia for the control of locusts and grasshoppers. BioControl 49, 6381.CrossRefGoogle Scholar
Kooyman, C. and Godonou, I. (1997) Infection of Schistocerca gregaria larvae by Metarhizium flavoviride in oil formulation applied under desert conditions. Bulletin of Entomological Research 87, 105107.CrossRefGoogle Scholar
Kooyman, C., Batman, R. P., Langewald, J., Lomer, C. J., Ouambama, Z. and Thomas, M. B. (1997) Operational-scale application of enthompathogenic fungi for control of Sahelian grasshoppers. Proceedings of the Royal Society of London B 264, 541546.CrossRefGoogle Scholar
Langewald, J., Ouambama, Z., Mamadou, A., Peveling, R., Stolz, I., Bateman, R., Attignon, S., Blanford, S., Arthurs, S. and Lomer, C. J. (1999) Comparison of a synthetic insecticide with a mycoinsecticide for the control of Oedaleus senegalensis Krauss (Orthoptera: Acrididae) and other Sahelian grasshopper larvae at operational scale. Biocontrol Science and Technology 9, 199214.CrossRefGoogle Scholar
Langewald, J., Thomas, M. B., Douro-Kpindou, O. K. and Lomer, C. J. (1997) Use of Metarhizium flavoviride for control of Zonocerus variegatus: a model, linking dispersal and secondary infection from the spray residue with mortality in caged field samples. Entomologia Experimentalis et Applicata 82, 18.CrossRefGoogle Scholar
Lomer, C. J., Bateman, R. P., Dent, D., De Groote, H., Douro-Kpindou, O -K., Kooyman, C., Langewald, J., Ouambama, Z., Peveling, R. and Thomas, M. (1999) Development of strategies for the incorporation of biological pesticides into the integrated management of locusts and grasshoppers. Agricultural and Forest Entomology 1, 7188.CrossRefGoogle Scholar
Lomer, C. J., Bateman, R. P., Godonou, I., Kpindou, D., Shah, P., Paraiso, A. and Prior, C. (1993) Field infection of Zonocerus variegatus following application of an oil-based formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 3, 337346.CrossRefGoogle Scholar
Lomer, C. J., Thomas, M. B., Godonou, I., Shah, P. A., Douro-Kpindou, O.-K. and Langewald, J. (1997) Control of grasshoppers, particularly Hieroglyphus daganensis, in northern Benin using Metarhizium flavoviride. Memoirs of the Entomological Society of Canada 171, 301311.CrossRefGoogle Scholar
LUutte BIologique contre les LOcusts et les SAtauriaux (LUBIOLOSA) (1999) Green Muscle® user hand book, Ver 4. Text: J. Langerwald.Google Scholar
Moore, D., Bridge, P. D., Higgins, P. M., Bateman, R. P. and Prior, C. (1993) Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology 122, 605616.CrossRefGoogle Scholar
Moore, D. and Morley-Davies, J. (1994) The effects of temperature and UV irradiation on conidia of Metarhizium flavoviride. Brighton Crop Protection Conference – Pests and Diseases, 3, 10851090.Google Scholar
Moore, D., Reed, M., Le Patourel, G., Abraham, Y. J. and Prior, C. (1992) Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. Journal of Invertebrate Pathology 60, 304307.CrossRefGoogle Scholar
Ouedraogo, R. M., Cusson, M., Goettel, M. S. and Brodeur, J. (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var. acridum. Journal of Invertebrate Pathology 82, 103109.CrossRefGoogle ScholarPubMed
Ouedraogo, A., Fargues, J., Goettel, M. S. and Lomer, C. J. (1997) Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and Metarhizium flavoviride. Mycopathologia 137, 3743.CrossRefGoogle Scholar
Peveling, R. and Demba, S. A. (1997) Virulence of the entomopathogenic fungus Metarhizium flavoviride Gams and Rozsypal and toxicity of diflubenzuron, fenitrothion–esfenvalerate and profenofos–cypermethrin to non-target arthropods in Mauritania. Archives of Environmental Contamination and Toxicology 32, 6979.CrossRefGoogle Scholar
Peveling, R., Rafanomezantsoa, J., Razafnirina, R., Tovonkery, R. and Zafimaniry, G. (1999) Environmental impact of the locust control agents fenitrothion, fenitrothion–esfenvalerate and trifumuron on terrestrial arthropods in Madagascar. Crop Protection 18, 659676.CrossRefGoogle Scholar
Scherer, R., Bateman, R. P., Moore, D. and McClatchie, G. V. (1992) Control of the migratory locust Locusta migratoria capito in Madagascar: the potential for the use of a mycopesticide. Brighton Crop Protection Conference – Pests and Diseases 1, 357362.Google Scholar
Thomas, M. B., Blandford, S., Gbongboui, C. and Lomer, C. J. (1998) Experimental studies to evaluate spray applications of mycoinsecticide against rice grasshopper larvae, Hieroglyphus daganensis in northern Benin. Entomologia Experimentalis et Applicata 87, 93102.CrossRefGoogle Scholar
Thomas, M. B., Simon, N. W., Langewald, J. and Lomer, C. J. (1996) Persistence of Metarhizium flavoviride and consequences for biological control of grasshoppers and locusts. Pesticide Science 49, 4755.3.0.CO;2-O>CrossRefGoogle Scholar
Thomas, M. B., Wood, S. N., Langewald, J. and Lomer, C. J. (1997) Persistence of Metarhizium flavoviride and consequences for biological control of grasshopper larvae and locusts. Pesticide Science 49, 4755.3.0.CO;2-O>CrossRefGoogle Scholar
Van der Valk, H. (2007) Review of the efficacy of Metarhizium anisopliae var. acridum against desert locust. In Desert Locust Technical Series No. AGP/DL/TS/34. FAO, Rome.Google Scholar
Wilps, W. (2004) Barrier Treatments as a Means of Controlling Migratory Locust. A Literature Review. FAO EMPRES/CR/GTZ, Rome.Google Scholar