Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T23:00:20.454Z Has data issue: false hasContentIssue false

Pollination biology of Theobroma and Herrania (Sterculiaceae): II. Analyses of floral oils

Published online by Cambridge University Press:  19 September 2011

Barbara J. Erickson
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706
Allen M. Young
Affiliation:
Invertebrate Zoology Section, Milwaukee Public Museum, Milwaukee, Wisconsin 53233
Melanie A. Strand
Affiliation:
Department of Zoology, University of Wisconsin, Milwaukee, Wisconsin 53201
Eric H. Erickson Jr
Affiliation:
USDA, ARS, North Central States Bee Research Unit, Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

Floral fragrance oils related to pollination were studied in three species of Theobroma and one Herrania species (Sterculiaceae) in Costa Rica. This study was prompted by field observations that floral odours and floral visitors are markedly different between Theobroma and Herrania, as well as between species of Theobroma.

Floral fragrance in cultivated T. cacao consisted of 78 components, primarily saturated and unsaturated hydrocarbons, with 1-pentadecene the major constituent followed by n−pentadecane. The distribution of 1-pentadecene was similar at 0900 hr (43.6%), 1130 hr (52.5%) and 2000 hr (51.1%) sampling times but only 1.2% at 1600 hr. The ratio of 1-pentadecene to n−pentadecane in the 1600 hr sample, approximately 1:6, contrasted with a 3:1 ratio at 0900 and 1130 and a 6:1 ratio at 2000 hr. The greatest concentration of volatiles was found in the 1130 hr sample, with 0900 and 2000 hr concentrations being essentially equal and intermediate between the high (1130 hr) and the low (1600 hr).

Of the 58 compounds detected in T. mammosum steam distillate at 0815 hr, an array of linalool oxides accounted for 12.5% of the oil followed by isoeugenol (8.9%). Saturated hydrocarbons were also present but, unlike T. cacao, n-tricosane was the major hydrocarbon (12.2%). The major constituents of T. mammosum oil clearly distinguish this species from T. cacao.

A markedly different profile of major floral volatiles was found in T. simiarum: major constituents included the monoterpenoids citral, geraniol, nerol, and citronellol. Unlike the oily, hydrocarbon fragrance of T. cacao and T. mammosum, T. simiarum floral fragrance is citrus-like both in the field and laboratory. Our fragrance studies suggest considerable evolutionary divergence within Theobroma.

The floral fragrance of H. cuatrecasana contained volatiles characteristic of dipteran-pollinated plant species. Unusual volatiles found in Herrania fragrance included iridomyrmecin, guaiol, and other azulenic derivatives. No such monoterpenoids and bicyclic sesquiterpenoids (with the exception of longifolene, 0.1%, in T. simiarum) were found in Theobroma. The profiles of floral fragrance chemotaxonomically support the exclusion of Herrania spp. from the genus Theobroma.

Résumé

Les essences florales parfumées liées à la pollinisation ont été etudiees dans trois espèces de Theobroma et une espèce d'Herrania (Sterculiaceae) au Costa-Rica. Cette étude est née d'observations sur le terrain qui ont montré que les odeurs et visiteurs floraux sont nettement différents entre Theobroma et Herrania, de même que parmi les différentes espèces de Theobroma.

L'essence florale dans le T. cacao cultivé se compose de 78 éléments principalement des hydrocarbures saturés et non-satures avec 1-pentadecene comme principal contituant suivi de n.pentadecane. La distribution de 1-pentadecene était similaire aux heures de relevés suivantes: à 09.00 hr (43,6%), a 11.30 hr (52,5%), à 20,00 hr (51,1%) mais seulement de 1,2% à 16.00 hr. La proportion de 1-pentadecene par rapport à n-pentadecane dans la prélèvement de 16.00 hr, approximativement de 1:6, contrastait avec une proportion de 3:1 a 09.00 hr et 11.30 hr et celle de 6:1 à 20.00 hr. Le plus grand taux de concentration d'éléments volatiles a été trouvé dans le prélèvement de 11.30hr, les taux de concentration de 09.00 hr et de 20.00 hr étant essentiellement égaux et intermédiaires entre le taux le plus élevé (11.00 hr) et le plus faible (16.00 hr).

Des 58 composés détectés dans T. mammosum à 08.15h un assortiment d'oxydes linéloes représentait 12,5% de l'essence suivi d'isoeugenol (8,9%). Des hydrocarbones satures étaient aussi présents mais, à la difference de T. cacao, n-tricosane était le principal hydrocarbone (12,2%). Les principaux éléments constitutifs de l'essence de T. mammosum distinguait clairement cette espèce de T. cacao. Un profil nettement différent des principaux éléments volatiles floraux a été trouvé dans T. simiarum: les principaux éléments constitutifs comprenaient monoterpinoides, citrol, géraniol, nérol et cintronellol. A la différence de l'essence huileuse, hydrocarbonée de T. cacao et T. mammosum, l'essence florale de H. cuatrecasana contenait des éléments volatils caractéristiques des espèces de plantes à pollinisation par diptères. Des éléments volatils inhabituels trouvés dans l'essence de Herrania comprenaient iridomyrmecin, guaiol et autres dérivés hydrocarbonés. Ni monoterpinoides, ni sesquiterpinoides bicycliques (à l'exception de longifolene, 0,1% dan T. simiarum) n'ont été trouvés dans Theobroma. Les profils de l'essence floral confirment chimiotacinomiquement l'exclusion des espèces Herrania du genre Theobroma.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addison, G. O. and Tavares, R. M. (1951) Observacoes sobre as especies do general Theobroma que ocorrem na Amazonia. Bolet. Tech. Inst. Agron. do Norte Belem No. 25, 320.Google Scholar
Agren, L. and Borg-Karlson, A. K. (1984) Responses of Argogorytes (Hymenoptera: Sphecidae) males do odor signals from Ophyrs insectifera (Orchidaceae). Preliminary EAG and Chemical investigation. Nov. Acta Reg. Soc. Scient. Upsaliensis, Ser. V:. C, 3, 111117.Google Scholar
Bergstrom, G. (1978) Role of volatile chemicals in Ophryspollinator interactions. In Biochemical Aspects of Plant and Animal Coevolution (Edited by Harborne, J. B.). Academic Press, New York and London.Google Scholar
Brizicky, G. K. (1966) The genera of Sterculiaceae in the southeastern United States. J. Arnold Arb. 47, 6074.CrossRefGoogle Scholar
Buttery, R. G. and Kamm, J. A. (1980) Volatile components of alfalfa: possible insect host plant attractants. J. Agric. Food Chem. 28, 978981.CrossRefGoogle Scholar
Buttery, R. G., Kamm, J. A. and Ling, L. C. (1982) Volatile components of alfalfa flowers and pods. J. Agric. Food Chem. 30, 739742.CrossRefGoogle Scholar
Buttery, R. G., Kamm, J. A. and Ling, L. C. (1984) Volatile components of red clover leaves, flowers and seed pods: possible insect attractants. J. Agric. Food Chem. 32, 254256.CrossRefGoogle Scholar
Buttery, R. G. and Ling, L. C. (1984) Corn leaf volatiles: identification using Tenax trapping for possible insect attractants. J. Agric. Food Chem. 32, 11041106.CrossRefGoogle Scholar
Buttery, R. G., Parker, F. D., Teranishi, R., Mon, T. R. and Ling, L. C. (1981) Volatile components of alfalfa leaf-cutter bee cells. J. Agric. Food Chem. 29, 955958.CrossRefGoogle Scholar
Buttery, R. G., Seifert, R. M., Ling, L. C., Soderstrom, E. L., Ogawa, J. M. and Turnbaush, J. G. (1982) Additional aroma components of honeydew melon. J. Agric. Food Chem. 30, 12081211.CrossRefGoogle Scholar
Cristobal, C. L. (1960) Revision del genero Ayenia (Sterculiaceae). Opera Lilloana 4, 1230.Google Scholar
Cristobal, C. L. (1976) Estudio taxonomico d 1 genero Byttneria Loefling (Sterculiaceae). Bonplandia 4, 1428.CrossRefGoogle Scholar
Cuatrecasas, J. (1964) Cacao and its allies—a taxonomic revision of the genus Theobroma. Contrib. U.S. Nat. Mus. 35, 379614.Google Scholar
Davidek, J., Pudel, F., Vesilek, J. and Kubelka, V. (1982) Volatile constituents of Elder (Sambacus nigra L.) II. Berries, Lebensm. Wiss. u. Technol. 15, 181182.Google Scholar
Enriquez, G. A. (1977) The nature of self-incompatibility. Turrialba, Costa Rica, C.A.T.I.E., pp. 127 (mimeo).Google Scholar
Finnamore, H. F. (1926) The Essential oils. E. Benn Ltd., London.Google Scholar
Flath, R. A., Mon, T. R., Lorenz, G., Whitten, C. J. and Mackley, J. W. (1983) Volatile components of Acacia sp. blossoms. J. Agric. and Food Chem. 31, 11671170.CrossRefGoogle Scholar
Francke, W., Schroder, W., Bergstrom, G. and Tengo, J. (1984) Esters in the volatile secretion of bees. Reprt. Ecol. Sta. Uppsala Univ. 1983, 128136.Google Scholar
Freytag, G. F. (1951) A revision of the genus Guazuma. Ceiba 1, 193225.Google Scholar
Fryxell, P. A. (1957) Mode of reproduction of higher plants. Bot. Rev. 23, 135233.CrossRefGoogle Scholar
Gentry, A. (1976) A new Panamanian Sterculia with taxonomic notes on the genus. Ann. Miss. Bot. Gard. 63, 370372.CrossRefGoogle Scholar
Gibbs, P. E., Semir, J. and De Cruz, N. D. (1977) Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciencia e Cultura 29, 14361441.Google Scholar
Goldberg, A. (1967) The genus Melochia L. (Sterculizceae). Contribut. U.S. Nat. Mus. 34, 191362.Google Scholar
Hanny, B. W., Thompson, A. C., Gueldner, R. C. and Hedin, P. A. (1973a) An investigation of the essential oil of Hibiscus syriacus L. Agric. Food Chem. 21, 10011004.CrossRefGoogle Scholar
Hanny, B. W., Thompson, A. C., Gueldner, R. C. and Hedin, P. A. (1973b) Constituents of cotton seedlings: an investigation of the preference of male boll weevils for the epicotyl tips. Agric. Food Chem. 21, 10041006.CrossRefGoogle Scholar
Hernandez, J. (1965) Insect pollination of cacao (Theobroma cacao L.) in Costa Rica. Cot. Dissert. Univ. of Wisconsin, Madison.Google Scholar
Hills, H. G., Williams, N. H. and Dodson, C. H. (1972) Floral fragrances and isolating mechanisms in the genus Castasetum (Orchidaceae). Biotropica 4, 6176.CrossRefGoogle Scholar
Idstein, H. and Schreier, P. (1985) Volatile constituents from Guava (Psidium guajava L.) fruit. J. Agric. Food Chem. 33, 138143.CrossRefGoogle Scholar
Janson, C. H. (1983) Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219, 187189.CrossRefGoogle Scholar
Kalin-Arroyo, M. T., Primack, R. and Armesto, J. (1982) Community studies in pollination ecology in the high temperature Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Amer. J. Bot. 69, 8297.CrossRefGoogle Scholar
Kaufmann, T. (1975) An efficient, new cocoa pollinator, Lasioglossum sp. (Hymenoptera: Halictidae) in Ghana, West Africa. Turrialba 25, 9091.Google Scholar
Kolattukudy, P. E., Croteau, R. and Brown, L. (1974) Structure and biosynthesis of cuticular lipids. Hydroxylation of palmitic acid and decarboxylation of C23, C30, and C32 acids in Vicia faba flowers. Plant Physiol. 54, 670677.CrossRefGoogle Scholar
Lindsey, A. H. (1984) Reproduction biology of Apiaceae. I. Floral visitors to Thaspium and Zizia and their importance in pollination. Am. J. Bot. 71, 375387.CrossRefGoogle Scholar
Martin, F. W. (1967) Distyly, self-incompatibility and evolution in Melochia. Evolution 21, 493499.CrossRefGoogle ScholarPubMed
Mesler, M. R., Ackerman, J. D. and Lu, K. L. (1980) The effectiveness of fungus gnats as pollinators. Am. J. Bot. 67, 564567.CrossRefGoogle Scholar
Miller, R. (1952) Contribucion al estudio del a catalasa en el gineceo de la flor de cacao. Cacao en Colombia 1, 8999.Google Scholar
Robyns, A.. (1964) Flora of Panama, family 117: Sterculiaceae. Ann. Missouri Bot. Gard. 51, 69107.CrossRefGoogle Scholar
Schneider, E. L. and Nichols, D. M. (1984) Floral biology of Argemone Aurantiaca (Papaveraceae). Bull. Torrey Bot. Club 111, 17.CrossRefGoogle Scholar
Schultes, R. E. (1958) A synopsis of Herrania. J. Arnold Arb. 39, 216278.Google Scholar
Simpson, B. B. and Neff, J. L. (1981) Floral rewards: alternatives to pollen and nectar. Ann. Missouri Bot. Gard. 68, 301322.CrossRefGoogle Scholar
Simpson, B. B., Neff, J. L. and Seigler, D. S. (1983) Floral biology and floral rewards of Lysimachia (Primulaceae). Amer. Midi Nat. 110, 249256.CrossRefGoogle Scholar
Soetardi, R. G. (1950) De Betekenis van Insecten Bij Bestuiving van Theobroma cacao L. Archiv. Kofnecult. Indonesie 17, 131.Google Scholar
Soria, S. De J. (1970) Studies on Forcipomyia spp. midges (Diptera, Ceratopogonidae) related to the pollination of Theobroma cacao L. Doct. Dissert. Univ. Wisconsin, Madison.Google Scholar
Steiner, K. E. (1985) The role of nectar and oil in the pollination of Drymonia serrulata (Gesneriaceae) by Epicharis bees (Anthophoridae) in Panama. Biotropica 17, 217299.CrossRefGoogle Scholar
Stejskal, G. (1969) Nectary y aroma de las flores de cacao. Oriente Agropeuc. 1, 7592.Google Scholar
Stelleman, P. (1978) The possible role of insect visits in pollination of reputedly anemophilous plants, exemplified by Plantago lanceolata, and syrphid flies. In: The Pollination of Flowers by Insects (Edited by Richards, A. J.), Linn. Soc. Symp. 6. Academic Press, London.Google Scholar
Thien, L. B. (1974) Flora biology of Magnolia. Amer. J. Bot. 61, 10371045.CrossRefGoogle Scholar
Thien, L. B., Heimermann, W. H. and Holman, R. T. (1975) Floral odours and quantitative taxonomy of Magnolia and Liriodendron. Taxon. 24, 557568.CrossRefGoogle Scholar
Thien, L. B., White, D. A. and Yatsu, L. Y. (1983) The reproductive biology of a relict—lllicium floridanum Ellis. Amer. J. Bot. 70, 719727.Google Scholar
Van Der Pijl, L. (1978) Reproductive integration and sexual disharmony in floral functions. In The Pollination of Flowers by Insects (Edited by Richards, A. J.), Linn. Soc. Symp. No. 6. Academic Press, London.Google Scholar
Vesilek, J., Kubelka, V., Pudil, F., Svobodova, Z. and Davidek, J. (1981) Volatile constituents of Elder (Sambucus nigra L.) I. Flowers and leaves. Lebensm. Wiss. u. Technol. 14, 309312.Google Scholar
Vogel, S. (1966) Scent organs of orchid flowers and their relation to insect pollination (Edited by DeGarma, L. R.), Proc. Fifth World Orch. Conf., Long Beach, California.Google Scholar
Vogel, S. (1978) Pilzmuckenblumen als Pilzminenten. Flora Bd. 167, 329366.CrossRefGoogle Scholar
Waller, G. R. (1970) Metabolism of plant terpenoids. In Progress in the Chemistry of Fats and Other Lipids (Edited by Holman, R. T.), Oxford, Pergamon Press.Google Scholar
Williams, N. H. and Whitten, W. M. (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol. Bull. 164, 355395.CrossRefGoogle Scholar
Winder, J. A. (1978) Cocoa flower Diptera: their identity, pollinating activity and breeding sites. PANS 24, 518.CrossRefGoogle Scholar
Young, A. M. (1981) The ineffectiveness of the stingless bee, Trigona jaty (Hymenoptera: Apidae: Meliponinae) as a pollinator of cocoa (Theobroma cacao L.), J. Appl. Ecol. 18, 149155.CrossRefGoogle Scholar
Young, A. M. (1983) Seasonal differences in abundance and distribution of cocoa-pollinating midges in relation to flowers and fruit-set between sunny and shaded habitats of the La Lola Cocoa Farm in Costa Rica. J. Appl. Ecol. 20, 801831.CrossRefGoogle Scholar
Young, A. M. (1984a) Mechanism of pollination by Phoridae (Diptera) in some Herrania species (Sterculiaceae) in Costa Rica. Proc. Ent. Soc. Wash. 86, 503518.Google Scholar
Young, A. M. (1984b) Research on the natural pollination of cocoa in Central America: overview of current directions. Proc. 9th Int. Cocoa Res. Conf. Lome, Togo.Google Scholar
Young, A. M. (1985a) Studies of cecidomyiid midges (Diptera: Cecidomyiidae) as cocoa pollinators in Central America. Proc. Ent. Soc. Wash. 87, 4979.Google Scholar
Young, A. M. (1985b) Pollen collecting by stingless bees on cacao flowers. Experientia 41, 760762.CrossRefGoogle Scholar
Young, A. M., Schaller, M. and Strand, M. (1984) Floral nectaries and trichomes in relation to pollination in some species of Theobroma and Herrania (Sterculiaceae). Am. J. Bot. 71, 466480.CrossRefGoogle Scholar
Young, A. M., Erickson, B. J., Erickson, E. H. Jr and Strand, M. A. (1986) Pollination biology of Theobroma and Herrania (Sterculiaceae). I. Floral biology. Insect Sci. Appl. 8, 151164.Google Scholar