Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T01:37:54.127Z Has data issue: false hasContentIssue false

Viability, Growth, and Fertility of Knotweed Cytotypes in North America

Published online by Cambridge University Press:  20 January 2017

Melinda A. Gammon*
Affiliation:
Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
Eric Baack
Affiliation:
Department of Biology, Luther College, 700 College Drive, Decorah, IA 52101 Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
Jennifer Forman Orth
Affiliation:
Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
Rick Kesseli
Affiliation:
Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
*
Corresponding author's E-mail: melinda.gammon@umb.edu

Abstract

Hybridization between two introduced plant species can influence the invasion capabilities of the exotic taxa, but the role of hybridization will likely differ in different invasions, even of the same species. Until now, studies concerning the ploidy of Japanese knotweed, giant knotweed, and their hybrids have been conducted in Europe or native ranges in Asia. Here, we assess the role of hybridization and ploidy in a U.S. invasion. We use flow cytometry to characterize DNA content in (1) established families in a common garden, (2) seedlings grown from common garden parents, and (3) wild populations. We also measured fertility in the garden and the field and vegetative growth traits in the garden. Although the majority of our parental and hybrid samples had ploidy levels previously documented in Europe (4X and 8X for parental species; 6X for hybrids), we found a wider range of knotweed cytotypes established in our garden (4X, 6X, 7X, 8X, 9X, and 10X) and additionally detected 5X, 11X, 12X, and possibly 14X ploidy levels in progeny from garden seed parents. The unexpected cytotypes were not confined to the greenhouse or common garden, in that all < 11X ploidy levels were also found in field populations in Massachusetts. In several cases, these data contradicted our expectations on the basis of morphological and molecular analysis, suggesting both significant introgression and the introduction of multiple cytotypes from Asia. With one exception (14X), we found all cytotypes were capable of strong vegetative growth, seed set, and the production of viable pollen. Without barriers to sexual reproduction, introgression is expected to progress, creating a progressively more diverse swarm of invasive genotypes.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Massachusetts Department of Agricultural Resources, 251 Causeway Street, Suite 500, Boston, MA 02114

References

Literature Cited

Adams, K. L. and Wendel, J. F. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Bio 8:135141.Google Scholar
Ainouche, M. L., Baumel, A., Salmon, A., and Yannic, G. 2004. Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165172.Google Scholar
Aramuganathan, K. and Earle, E. D. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep 9:229241.Google Scholar
Baack, E. J. and Rieseberg, L. H. 2007. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev 17:513518.Google Scholar
Bailey, J. P. 1999. The Japanese knotweed invasion of Europe; the potential for further evolution in non-native regions. Pages 2737. In Yano, E., Matsuo, K., Syiyomi, M., and Andow, D. A. eds. Biological Invasions of Ecosystem by Pests and Beneficial Organisms. Tsukuba, Japan National Institute of Agro- Environmental Sciences.Google Scholar
Bailey, J. P., Bímová, K., and Mandák, B. 2007. The potential role of polyploidy and hybridisation in the further evolution of the highly invasive Fallopia taxa in Europe. Ecol. Res 22:920928.Google Scholar
Bailey, J. P., Bímová, K., and Mandák, B. 2009. Asexual spread versus sexual reproduction and evolution in Japanese knotweed sets the stage for the “Battle of the Clones.”. Bio. Invasions 11:13873547.Google Scholar
Bailey, J. P., Child, L. E., and Conolly, A. P. 1996. A survey of the distribution of Fallopia × bohemica (Chrtek & Chrtkova) J. Bailey (Polygonaceae) in the British Isles. Watsonia 21:187198.Google Scholar
Bailey, J. P. and Stace, C. A. 1992. Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia (Polygonaceae). Plant Syst. Evol 180:2952.Google Scholar
Barney, J. N., Tharayil, N., DiTommaso, A., and Bhowmi, P. C. 2006. The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb.& Zucc. [= Fallopia japonica (Houtt.) Ronse Decr.]. Can. J. Plant Sci 86:887905.Google Scholar
Bennett, M. D. and Leitch, I. J. 2005. Genome size evolution in plants. Pages 89162. In Gregory, T. R. ed. The Evolution of the Genome. San Diego Elsevier.Google Scholar
Bleeker, W. and Matthies, M. 2005. Hybrid zones between invasive Rorippa austriaca and native R. sylvestris (Brassicaceae) in Germany: ploidy levels and patterns of fitness in the field. Heredity 94:664670.Google Scholar
Brock, J. H. and Wade, M. 1992. Regeneration of Japanese knotweed (Fallopia japonica) from rhizome and stems: observation from greenhouse trials. Pages 8593. in. Proceedings from IXéme Colloque International Sur la Biologie des Mauvaise Herbes. Paris, France Association Nationale de Protection des Plantes.Google Scholar
Dart, S., Kron, P., and Mable, B. K. 2004. Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can. J. Bot 82:185197.Google Scholar
Doyle, J. J., Flagel, L. E., Paterson, A. H., Rapp, R. A., Soltis, D. E., Soltis, P. S., and Wendel, J. F. 2008. Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet 42:443461.Google Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst 30:539563.Google Scholar
Forman, J. 2003. Of Knotweeds and Other Weeds: Invasive Plants at Home and Abroad. Ph.D Dissertation. Boston, MA University of Massachusetts Boston. 110 p.Google Scholar
Gammon, M. 2009. The diversity, growth, and fitness of the invasive plants Fallopia × bohemica in the United States (Polygonaceae). Ph.D Dissertation. Boston, MA University of Massachusetts Boston. 135 p.Google Scholar
Gammon, M. A., Grimsby, J. L., Tsirelson, D., and Kesseli, R. 2007. Molecular and morphological evidence reveals introgression in swarms of the invasive taxa Fallopia japonica, Fallopia sachalinensis, and F. × bohemica (Polygonaceae) in the United States. Am. J. Bot 94:948956.Google Scholar
Gammon, M. A. and Kesseli, R. 2009. Introductions of Fallopia haplotypes in the U.S. Biol. Invasions. DOI: 10.1007/s10530-009-9459-7.Google Scholar
Grimsby, J. L. and Kesseli, R. 2009. Genetic composition of invasive Japanese knotweed s.l. in the United States. Biol. Invasions. DOI:10.1007/s10530-009-9602-5.Google Scholar
Grimsby, J. L., Tsirelson, D., Gammon, M. A., and Kesseli, R. 2007. Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am. J. Bot 94:957–64.Google Scholar
Hollingsworth, M. L. and Bailey, J. P. 2000. Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese knotweed). Bot. J. Linn. Soc 133:463472.Google Scholar
[ISSG] Invasive Species Specialist Group 1998–2000. One Hundred of the World's Worst Invasive Alien Species. La Fondation TOTAL, Global Invasive Species Database. http://www.issg.org/database/species/search.asp?st=100ss. Accessed: June, 2010.Google Scholar
Iwatsubo, Y., Kodate, G., and Naruhashi, N. 2004. Polyploidy of Reynoutria japonica var. japonica (Polygonaceae) in Japan. J. Phytogeog. Tax 52:137142.Google Scholar
Kim, J. Y. and Park, C. 2000. Morphological and chromosomal variation in Fallopia section Reynoutria (Polygonaceae) in Korea. Brittonia 52:3448.Google Scholar
Krebs, C., Mahy, G., Matthies, D., Schaffner, U., Tiébré, M-S., and Bizoux, J-P. 2010. Taxa distribution and RAPD markers indicate different origin and regional differentiation of hybrids in the invasive Fallopia complex in central-western Europe. Plant Biol 12:215223.Google Scholar
Lecerf, A., Patfield, D., Boiché, A., Riipinen, M. P., Chauvet, E., and Dobson, M. 2007. Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia japonica). Can. J. Fish. Aquat. Sci 64:12731283.Google Scholar
Leitch, I. J. and Bennett, M. D. 2004. Genome downsizing in polyploid plants. Biol. J. Linn. Soc 82:651663.Google Scholar
Leitch, A. R. and Leitch, I. J. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320:481483.Google Scholar
Mahé, L., Le Pierres, D., Combes, M. C., and Lashermes, P. 2007. Introgressive hybridization between the allotetraploid Coffea arabica and one of its diploid ancestors, Coffea canephora, in an exceptional sympatric zone in New Caledonia. Genome 50:316324.Google Scholar
Mandák, B., Pyšek, P., and Bímová, K. 2004. History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:1564.Google Scholar
Mandák, B., Pyšek, P., Lysák, M., Suda, J., Krahulcová, A., and Bímová, K. 2003. Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Ann. Bot 92:265–72.Google Scholar
Moore, R. C. and Purugganan, M. D. 2005. The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol 8:122128.Google Scholar
Norton, J. D. 1966. Testing of plum pollen viability with tetrazolium salts. J. Am. Soc. Hortic. Sci 89:132134.Google Scholar
Otto, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131:452462.Google Scholar
Pandit, M., Tan, H. T., and Bisht, M. 2006. Polyploidy in invasive plant species of Singapore. Bot. J. Linn. Soc 151:395403.Google Scholar
Pyšek, P., Brock, J. H., Bímová, K., Mandák, B., Jarošik, V., Koukolíková, I., Pergl, J., and Štěpánek, J. 2003. Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invasibility at the genotype level. Am. J. Bot 90:14871495.Google Scholar
Ramsey, J. and Schemske, D. W. 2002. Neopolyploidy in flowering plants. Ann. Rev. Ecol. Syst 33:589639.Google Scholar
Raybould, A. F., Gray, A. J., Lawrence, M. J., and Marshall, D. F. 1991. The evolution of Spartina anglica C. E. Hubbard (Gramineae): origin and genetic variability. Biol. J. Linn. Soc 43:111126.Google Scholar
Richards, C. L., Walls, R. L., Bailey, J. P., Parameswaran, R., George, T., and Pigliucci, M. 2008. Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s.l. (Fallopia japonica and F. × bohemica, Polygonaceae). Am. J. Bot 95:931942.Google Scholar
Rieseberg, L. H. and Wendel, J. 1993. Introgression and its consequences in plants. Pages 70110. In Harrison, R. G. ed. Hybrid Zones and the Evolutionary Process. New York Oxford University Press.Google Scholar
Rieseberg, L. H. and Willis, J. H. 2007. Plant Speciation. Science 317:910914.Google Scholar
Rozen, S. and Skaletsky, H. J. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol 132:365386.Google Scholar
Schierenbeck, K. and Ellstrand, N. 2008. Hybridization and the evolution of invasiveness in plants and other organisms. Biol. Invasions 11:10931105.Google Scholar
Soltis, D. E., Soltis, P. S., and Tate, J. A. 2004. Advances in the study of polyploidy since plant speciation. New Phytol 161:173191.Google Scholar
Taberlet, P., Gielly, L., Patou, G., and Bouvet, J. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol. Bio 17:11051109.Google Scholar
Tiébré, M-S., Vanderhoeven, S., Saad, L., and Mahy, G. 2007. Hybridization and sexual reproduction in the invasive alien Fallopia (Polygonaceae) complex in Belgium. Ann. Bot 99:193203.Google Scholar
Yobekura, K. and Ohashi, H. 1997. New combinations of East Asian species of Polygonum s.l. J. Jpn. Bot 72:154161.Google Scholar
Zika, P. F. and Jacobson, A. L. 2003. An overlooked hybrid Japanese knotweed (Polygonum cuspidatum × sachalinese; Polygonaceae) in North American. Rhodora 105:143152.Google Scholar