Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T14:13:50.462Z Has data issue: false hasContentIssue false

Adaptation of super-sweet maize to cold conditions: mutant×genotype interaction

Published online by Cambridge University Press:  19 April 2010

B. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
V. M. RODRÍGUEZ
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
M. C. ROMAY
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
R. A. MALVAR
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
A. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
P. REVILLA*
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080Pontevedra, Spain
*
*To whom all correspondence should be addressed. Email: previlla@mbg.cesga.es

Summary

Super-sweet maize (shrunken2, sh2) has a longer post-harvest life than standard sweetcorn (sugary1, su1), but is less well-adapted to cold conditions. The objective of the present work was to determine if the replacement of su1 by sh2 alters the combining abilities of sweetcorn inbreds for adaptation to early planting under cold conditions. Two diallel sets of su1 and sh2 near-isogenic inbred lines were evaluated in a cold chamber and by early field planting. For most of the traits related to adaptation, except silking date, there were significant mutant×genotype interactions and the estimates of general combining ability (GCA) of each version of the same inbred were different, probably due to epistasis. Therefore, to widen the genetic base of the super-sweet germplasm for adaptation, conversion of the earliest su1 inbreds to sh2, ignoring other characteristics such as emergence or early vigour in early planting or cold tests, is proposed.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, M. G., Naylor, R. E. L. & Matthews, S. (2006). Distinguishing the effects of genotype and seed physiological age on low temperature tolerance of rice (Oryza sativa L). Experimental Agriculture 42, 337349.CrossRefGoogle Scholar
Alonso Ferro, R. C., Malvar, R. A., Revilla, P., Ordas, A., Castro, P. & Moreno-Gonzalez, J. (2008). Genetics of quality and agronomic traits in hard endosperm maize. Journal of Agricultural Science, Cambridge 146, 551560.CrossRefGoogle Scholar
Azanza, F., Bar-Zur, A. & Juvik, J. A. (1996). Variation in sweet corn kernel characteristics associated with stand establishment and eating quality. Euphytica 87, 7–18.CrossRefGoogle Scholar
Douglass, S. K., Juvik, J. A. & Splittstoesser, W. E. (1993). Sweet corn seedling emergence and variation in kernel carbohydrate reserves. Seed Science and Technology 21, 433445.Google Scholar
Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences 9, 463493.CrossRefGoogle Scholar
Hassell, R. L., Dufault, R. J. & Phillips, T. L. (2003). Low-temperature germination response of su, se, and sh2 sweet corn cultivars. HortTechnology 13, 136141.CrossRefGoogle Scholar
Hotchkiss, J. R., Revilla, P. & Tracy, W. F. (1997). Variation of cold tolerance among open-pollinated sweet corn cultivars. HortScience 32, 719723.CrossRefGoogle Scholar
Marshall, S. W. & Tracy, W. F. (2003). Sweet corn. In Corn: Chemistry and Technology (Eds White, P. J. & Johnson, L. A.), pp. 537569. St. Paul, MN: American Association of Cereal Chemists.Google Scholar
Monneveux, P., Sanchez, C. & Tiessen, A. (2008). Future progress in drought tolerance in maize needs new secondary traits and cross combinations. Journal of Agricultural Science, Cambridge 146, 287300.CrossRefGoogle Scholar
Ordas, A., Santiago, I., Malvar, R. A. & Vales, M. I. (1996). Six cycles of selection for adaptation in two exotic populations of maize. Euphytica 92, 241247.CrossRefGoogle Scholar
Ordas, B., Padilla, G., Malvar, R. A., Ordas, A., Rodriguez, V. M. & Revilla, P. (2006). Cold tolerance improvement of sugary enhancer1 hybrids of sweet corn. Maydica 51, 567574.Google Scholar
Revilla, P., Butron, A., Malvar, R. A. & Ordas, A. (1999). Relationships among kernel weight, early vigor, and growth in maize. Crop Science 39, 654658.CrossRefGoogle Scholar
Revilla, P., Malvar, R. A., Abuin, M. C., Ordas, B., Soengas, P. & Ordas, A. (2000). Genetic background effect on germination of su1 maize and viability of the su1 allele. Maydica 45, 109111.Google Scholar
Revilla, P., Hotchkiss, J. R. & Tracy, W. F. (2003). Cold tolerance evaluation in a diallel among open-pollinated sweet corn cultivars. HortScience 38, 8891.CrossRefGoogle Scholar
Revilla, P., Butron, A., Cartea, M. E., Malvar, R. A. & Ordas, A. (2005). Breeding for cold tolerance. In Abiotic Stresses. Plant Resistance through Breeding and Molecular Approaches (Eds Ashraf, M. & Harris, P. J. C.), pp. 301398. New York: The Haworth Press.Google Scholar
Revilla, P., Malvar, R. A., Rodriguez, V. M., Butron, A., Ordas, B. & Ordas, A. (2006). Variation of sugary1 and shrunken2 gene frequency in different maize genetic backgrounds. Plant Breeding 125, 478481.CrossRefGoogle Scholar
SAS Institute (2005). The SAS System. SAS Online Doc. HTML Format. Version eight. Cary, NC: SAS Institute.Google Scholar
Soberalske, R. M. & Andrew, R. H. (1978). Gene effects on kernel moisture and sugars of near isogenic lines of sweet corn. Crop Science 18, 743746.CrossRefGoogle Scholar
Tracy, W. F. (1997). History, genetics, and breeding of supersweet (shrunken2) corn. Plant Breeding Reviews 14, 189236.Google Scholar
Tracy, W. F. (2001). Sweet corn. In Specialty Corns (Ed. Hallauer, A. R.), pp. 155199. Boca Raton, FL: CRC Press.Google Scholar
Tracy, W. F. & Juvik, J. A. (1988). Electrolyte leakage and seed quality in a shrunken-2 maize selected for improved field emergence. HortScience 23, 391392.CrossRefGoogle Scholar
Waters, L. & Blanchette, B. L. (1983). Prediction of sweet corn field emergence by conductivity and cold test. Journal of American Society for Horticultural Science 108, 778781.CrossRefGoogle Scholar
Young, T. E., Juvik, J. A. & Demason, D. A. (1997). Changes in carbohydrate composition and α-amylase expression during germination and seedling growth of starch-deficient endosperm mutants of maize. Plant Science 129, 175189.CrossRefGoogle Scholar
Zan, G. H. & Brewbaker, J. L. (1999). Seed quality of isogenic endosperm mutants in sweet corn. Maydica 44, 271277.Google Scholar
Zhang, Y., Kang, M. S. & Lamkey, K. R. (2005). DIALLEL-SAS05: A comprehensive program for Griffing's and Gardner–Eberhart analyses. Agronomy Journal 97, 10971106.CrossRefGoogle Scholar