Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:42:12.943Z Has data issue: false hasContentIssue false

Feeding increasing concentrate to Tifton 85 hay ratios modulated rumen fermentation and microbiota in Nellore feedlot steers

Published online by Cambridge University Press:  16 April 2015

C. S. RIBEIRO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
Y. T. GRANJA-SALCEDO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
J. D. MESSANA*
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
A. J. NETO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
R. C. CANESIN
Affiliation:
Instituto de Zootecnia, Centro de Pesquisas em Pecuária de Corte, Sertãozinho, SP, Brazil
G. FIORENTINI
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
M. F. F. ALARCON
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
T. T. BERCHIELLI
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil Membro INCT/CA – UFV – Departamento de Zootecnia, Viçosa, Minas Gerais, Brazil
*
*To whom all correspondence should be addressed. Email: duarte_juliana@hotmail.com

Summary

The use of diets with increasing proportions of concentrate to fibre can ensure appropriate energy levels and result in greater efficiency in Nellore feedlot steers. It was hypothesized that higher proportions of concentrate in the diet of these Nellore steers may affect ruminal fermentation and microbiota as a consequence of ruminal pH reduction. The present study was conducted to evaluate the effect of diets with four different roughage (hay Tifton 85) : concentrate ratios on intake, digestibility, rumen fermentation and rumen microbiota of Nellore feedlot steers. Higher proportions of concentrate in the diet did not affect intake and digestibility of dry and organic matter. The concentration of N-NH3, total rumen volatile fatty acid, acetic (C2), butyric (C4), isobutyric, valeric and isovaleric acids, and microbial nitrogen did not differ among diets. However, increasing proportions of concentrate in the diet resulted in a linear reduction in average rumen pH and increased propionic acid (C3) concentration, resulting in lower relative C2 : C3. Bacterial population of Fibrobacter succinogenes, Ruminococus flavefaciens and Ruminococcus albus decreased in the rumen. However, bacteria that are consumers of lactic acid (Selenomonas ruminantium and Megasphaera elsdenii) and producers of lactic acid (Lactobacillus sp. and Streptococcus bovis) increased when animals were fed with high-concentrate diets. The total number of protozoa was similar for the different roughage : concentrate ratios. Protozoan counts were only influenced by diet for the genus Dasytricha. The findings point to diets with increasing concentrate to Tifton 85 hay ratios as inhibiting the growth of some cellulolytic bacteria and reducing fibre digestibility, and indicate Tifton 85 hay as a possible modulated rumen fermentation in the Nellore steer feedlot.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AFRC (Agricultural and Food Research Council) (1993). Energy and Protein Requirements of Ruminants. Wallingford, UK: CAB International.Google Scholar
Agle, M., Hristov, A. N., Zaman, S., Schneider, C., Ndegwa, P. M. & Vaddella, V. K. (2010). Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science 93, 42114222.CrossRefGoogle ScholarPubMed
Aguerre, M. J., Wattiaux, M. A., Powell, J. M., Broderick, G. A. & Arndt, C. (2011). Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science 94, 30813093.CrossRefGoogle ScholarPubMed
Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science 83, 15981624.CrossRefGoogle ScholarPubMed
Allen, M. S. & Mertens, D. R. (1988). Evaluating constraints on fiber digestion by rumen microbes. The Journal of Nutrition 118, 261270.CrossRefGoogle ScholarPubMed
AOAC (Association of Official Analytical Chemistry) (1990). Official Methods of Analysis. 15th edn.Arlington, VA: AOAC International.Google Scholar
Archimède, H., Sauvant, D. & Schmidely, P. (1997). Quantitative review of ruminal and total tract digestion of mixed diet organic matter and carbohydrates. Reproduction Nutrition Development 37, 173189.CrossRefGoogle ScholarPubMed
Bauman, D. E., Davis, C. L. & Bucholtz, H. F. (1971). Propionate production in the rumen of cows fed either a control or high grain, low-fiber diet. Journal of Dairy Science 54, 12821287.CrossRefGoogle ScholarPubMed
Brossard, L., Martin, C. & Michalet-Doreau, B. (2003). Ruminal fermentative parameters and blood acido-basic balance changes during the onset and recovery of induced latent acidosis in sheep. Animal Research 52, 513530.CrossRefGoogle Scholar
Casali, A. O., Detmann, E., Valadares Filho, S. C., Pereira, J. C., Henriques, L. T., de Freitas, S. G. & Paulino, M. F. (2008). Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. Revista Brasileira de Zootecnia 37, 335342.CrossRefGoogle Scholar
Cerrato-Sánchez, M., Calsamiglia, S. & Ferret, A. (2007). Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system. Journal of Dairy Science 90, 14861492.CrossRefGoogle Scholar
Chen, X. B. & Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – an Overview of Technical Details. Aberdeen, UK: International Feed Resources Unit, Rowett Research Institute.Google Scholar
D'Agosto, M. T. & Carneiro, M. E. (1999). Evaluation of lugol solution used for counting rumen ciliates. Revista Brasileira de Zoologia 16, 725729.CrossRefGoogle Scholar
Dawson, K. A., Rasmussen, M. A. & Allison, M. J. (1997). Digestive disorders and nutritional toxicity. In The Rumen Microbial Ecosystem, 2nd edn. (Eds Hobson, P. N. & Stewart, C. S.), pp. 631660. London, UK: Chapman & Hall.Google Scholar
Dehority, B. A. (2005). Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. The Journal of Eukaryotic Microbiology 52, 339342.CrossRefGoogle ScholarPubMed
Dehority, B. A., Tirabasso, P. & Grifo, A. P. Jr. (1989). Most-probable-number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Applied and Environmental Microbiology 55, 27892792.CrossRefGoogle ScholarPubMed
Denman, S. E. & McSweeney, C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology 58, 572582.CrossRefGoogle ScholarPubMed
DeVries, T. J., Dohme, F. & Beauchemin, K. A. (2008). Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: feed sorting. Journal of Dairy Science 91, 39583967.CrossRefGoogle ScholarPubMed
DeVries, T. J., Schwaiger, T., Beauchemin, K. A. & Penner, G. B. (2014). Impact of severity of ruminal acidosis on feed-sorting behaviour of beef cattle. Animal Production Science 54, 12381242.CrossRefGoogle Scholar
Doreau, M., van der Werf, H. M. G., Micol, D., Dubroeucq, H., Agabriel, J., Rochette, Y. & Martin, C. (2011). Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system. Journal of Animal Science 89, 25182528.CrossRefGoogle ScholarPubMed
Ellis, W. C., Mahlooji, M., Lascano, C. E. & Matis, J. H. (2005). Effects of size of ingestively masticated fragments of plant tissues on kinetics of digestion of NDF. Journal of Animal Science 83, 16021615.CrossRefGoogle ScholarPubMed
Fenner, H. (1965). Method for determining total volatile bases in rumen fluid by steam distillation. Journal of Dairy Science 48, 249251.CrossRefGoogle ScholarPubMed
Fernando, S. C., Purvis Ii, H. T., Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., Roe, A. & de Silva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology 76, 74827490.CrossRefGoogle ScholarPubMed
Firkins, J. L., Eastridge, M. L., St-Pierre, N. R. & Noftsger, S. M. (2001). Effects of grain variability and processing on starch utilization by lactating dairy cattle. Journal of Animal Science 79 (E. Suppl), E218E238.CrossRefGoogle Scholar
Franzolin, R. & Dehority, B. A. (1996). Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. Journal of Animal Science 74, 28032809.CrossRefGoogle ScholarPubMed
Fujihara, T., Ørskov, E. R., Reeds, P. J. & Kyle, D. J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished byintragastric nutrition. The Journal of Agricultural Science, Cambridge 109, 712.CrossRefGoogle Scholar
Galyean, M. L. & Defoor, P. J. (2003). Effects of roughage source and level on intake by feedlot cattle. Journal of Animal Science 81, E8E16.Google Scholar
Goad, D. W., Goad, C. L. & Nagaraja, T. G. (1998). Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. Journal of Animal Science 76, 234241.CrossRefGoogle ScholarPubMed
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agriculture Handbook 379. Washington, DC: USDA–ARSGoogle Scholar
Hall, M. B. (2000). Neutral Detergent-Soluble Carbohydrates. Nutritional Relevance and Analysis. A Laboratory Manual. University of Florida Extension Bulletin 339. Gainesville, FL: University of Florida.Google Scholar
Harvatine, K. J. & Allen, M. S. (2006). Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. Journal of Dairy Science 89, 10921103.CrossRefGoogle ScholarPubMed
Hill, G. M., Gates, R. N. & Burton, G. W. (1993). Forage quality and grazing steer performance from Tifton 85 and Tifton 78 bermudagrass pastures. Journal of Animal Science 71, 32193225.CrossRefGoogle ScholarPubMed
Hoffmann, M. (ed.) (1990). Tierfütterung. Berlin: VEB Deutscher Landwirtschaftsverlag.Google Scholar
Hristov, A. N., Ivan, M., Rode, L. M. & McAllister, T. A. (2001). Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. Journal of Animal Science 79, 515524.CrossRefGoogle ScholarPubMed
Hristov, A. N., Ropp, J. K., Grandeen, K. L., Abedi, S., Etter, R. P., Melgar, A. & Foley, A. E. (2005). Effect of carbohydrate source on ammonia utilization in lactating dairy cows. Journal of Animal Science 83, 408421.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Khafipour, E., Li, S., Plaizier, J. C. & Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 75, 71157124.CrossRefGoogle ScholarPubMed
Klieve, A. V., Hennessy, D., Ouwerkerk, D., Forster, R. J., Mackie, R. I. & Attwood, G. T. (2003). Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology 95, 621630.CrossRefGoogle ScholarPubMed
Kobayashi, Y., Shinkai, T. & Koike, S. (2008). Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion – review. Folia Microbiologica 53, 195200.CrossRefGoogle ScholarPubMed
Kozloski, G. V., Reffatti, M. V., Bonnecarrère Sanchez, L. M., Lima, L. D., Cadorin, R. L. Jr., Härter, C. J. & Fiorentini, G. (2007). Intake and digestion by lambs fed a low-quality grass hay supplemented or not with urea, casein or cassava meal. Animal Feed Science and Technology 136, 191202.CrossRefGoogle Scholar
Krause, K. M. & Combs, D. K. (2003). Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows. Journal of Dairy Science 86, 13821397.CrossRefGoogle ScholarPubMed
Lechartier, C. & Peyraud, J. L. (2010). The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents. Journal of Dairy Science 93, 666681.CrossRefGoogle ScholarPubMed
Mao, S. Y., Zhang, R. Y., Wang, D. S. & Zhu, W. Y. (2013). Impact of subacute ruminal acidosis (SARA) adapatation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 24, 219.CrossRefGoogle Scholar
Meissner, H. H. & Paulsmeier, D. V. (1995). Plant compositional constituents affecting between-plant and animal species prediction of forage intake. Journal of Animal Science 73, 24472457.CrossRefGoogle ScholarPubMed
Mertens, D. R. (1993). Rate and extent of digestion. In Quantitative Aspects of Ruminant Digestion and Metabolism (Eds Forbes, J. M. & France, J.), pp. 1350. Cambridge, UK: Commonwealth Agricultural Bureaux, Cambridge University Press.Google Scholar
Moorby, J. M., Dewhurst, R. J., Evans, R. T. & Danelón, J. L. (2006). Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. Journal of Dairy Science 89, 35523562.CrossRefGoogle ScholarPubMed
Mosoni, P., Chaucheyras-Durand, F., Béra-Maillet, C. & Forano, E. (2007). Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Journal of Applied Microbiology 103, 26762685.CrossRefGoogle ScholarPubMed
Oliveira, S. G., Berchielli, T. T., Pedreira, M., Primavesi, O., Frighetto, R. & Lima, M. (2007). Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology 135, 236248.CrossRefGoogle Scholar
Owens, D., McGee, M., Boland, T. & O'Kiely, P. (2008). Intake, rumen fermentation and nutrient flow to the omasum in beef cattle fed grass silage fortified with sucrose and/or supplemented with concentrate. Animal Feed Science and Technology 144, 2343.CrossRefGoogle Scholar
Palmquist, D. L. & Conrad, H. R. (1971). Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. Journal of Dairy Science 54, 10251033.CrossRefGoogle ScholarPubMed
Petri, R. M., Forster, R. J., Yang, W., McKinnon, J. J. & McAllister, T. A. (2012). Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology 112, 11521162.CrossRefGoogle ScholarPubMed
Piatkowski, B., Gürtler, H. & Voigt, J. (1990). Grundzüge der Wiederkäuerernährung. Stuttgart, Germany: Gustav Fischer Verlag.Google Scholar
Pina, D. S., Valadares Filho, S. C., Tedeschi, L. O., Barbosa, A. M. & Valadares, R. F. D. (2009). Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. Journal of Animal Science 87, 10581067.CrossRefGoogle ScholarPubMed
Russell, J. B., Sniffen, C. J. & Van Soest, P. J. (1983). Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. Journal of Dairy Science 66, 763775.CrossRefGoogle ScholarPubMed
Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M. & Wishart, D. S. (2012). A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. Journal of Dairy Science 95, 66066623.CrossRefGoogle ScholarPubMed
Satter, L. D. & Roffler, R. E. (1975). Nitrogen requirement and utilization in dairy cattle. Journal of Dairy Science 58, 12191237.CrossRefGoogle ScholarPubMed
Schwaiger, T., Beauchemin, K. A. & Penner, G. B. (2013). Duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: short-chain fatty acid and lactate absorption, saliva production, and blood metabolites. Journal of Animal Science 91, 57435753.CrossRefGoogle ScholarPubMed
Stone, W. C. (2004). Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. Journal of Dairy Science 87, (Supplement), E13E26.CrossRefGoogle Scholar
Sutton, J. D., Dhanoa, M. S., Morant, S. V., France, J., Napper, D. J. & Schuller, E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science 86, 36203633.CrossRefGoogle ScholarPubMed
Tafaj, M. A., Zebeli, Q. A., Maulbetsch, A. A., Steingaß, H. A. & Drochner, W. (2006). Effects of fibre concentration of diets consisting of hay and slowly degradable concentrate on ruminal fermentation and digesta particle size in mid-lactation dairy cows. Archives of Animal Nutrition 60, 254266.CrossRefGoogle ScholarPubMed
Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Nakamura, M., Aminov, R. I. & Benno, Y. (2000). Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6, 273284.CrossRefGoogle Scholar
Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M. & Benno, Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology 67, 27662774.CrossRefGoogle ScholarPubMed
Tempelman, R. J. (2004). Experimental design and statistical methods for classical and bioequivalence hypothesis testing with an application to dairy nutrition studies. Journal of Animal Science 82, E162E172.Google ScholarPubMed
Van Soest, P. J. & Robertson, J. B. (1985). Analysis of Forages and Fibrous Foods. Ithaca, NY: Cornell University Press.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Wolin, M. J., Miller, T. L. & Stewart, C. S. (1997). Microbe-microbe interactions. In The Rumen Microbial Ecosystem (Eds Hobson, P. N. & Stewart, C. S.), pp. 467491. New York: Champan & Hall.CrossRefGoogle Scholar
Yang, W. Z. & Beauchemin, K. A. (2006). Physically effective fiber: method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. Journal of Dairy Science 89, 26182633.CrossRefGoogle ScholarPubMed
Yang, W. Z., Beauchemin, K. A. & Rode, L. M. (2001). Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion in dairy cows. Journal of Dairy Science 84, 22032216.CrossRefGoogle ScholarPubMed
Zebeli, Q., Mansmann, D., Steingass, H. & Ametaj, B. N. (2010). Balancing diets for physically effective fibre and ruminally degradable starch: a key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livestock Science 127, 110.CrossRefGoogle Scholar
Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boguhn, J., Ametaj, B. N. & Drochner, W. (2012). Invited review: role of physically effective fiber an estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science 95, 10411056.CrossRefGoogle ScholarPubMed
Zhu, W., Fu, Y., Wang, B., Wang, C., Ye, J. A., Wu, Y. M. & Liu, J. X. (2013). Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. Journal of Dairy Science 96, 17271734.CrossRefGoogle ScholarPubMed