Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T09:00:10.974Z Has data issue: false hasContentIssue false

Cation-anion relationships in crop nutrition: I. Factors affecting cations in Italian rye-grass

Published online by Cambridge University Press:  27 March 2009

R. K. Cunningham
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts.

Extract

The chemical composition of plants depends on many things, the species, the type of soil, the climate, the manuring, and it also changes during the growing season as different results can be obtained from samples of the same plant taken at different times. For plant analysis to be used in assessing the nutrient status and manurial requirements of crops there is need for knowledge not only about the above factors which can affect the chemical composition of crops but also about others that are less obvious, such as ion interactions. Ions can interact in two ways called antagonism and synergism; antagonism means that the uptake of one ion decreases the uptake of another ion and synergism that uptake of one increases the uptake of another.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bear, F. E., & Prince, A. L. (1945). J. Amer. Soc. Agron. 37, 217.Google Scholar
Buehrer, T. F. (1932). Tech. Bull. Ariz. Agric. Exp. Sta. 42.Google Scholar
Cunningham, R. K. (1962). Chem.& Ind. 51, 2120.Google Scholar
Cunningham, R. K. (1963). Ph.D. Thesis, London University.Google Scholar
Dijkshoorn, W. (1957a). Neth. J. Agric. Sci. 5, 81.Google Scholar
Dijkshoobn, W. (1957b). Neth. J. Agric. Sci. 5, 233.Google Scholar
Emmert, F. H. (1961). Plant Analysis and Fertiliser Problems, p. 231. Ed. Reuther, W.. Washington: Pub. 8, Amer. Inst. Biol. Sciences.Google Scholar
Epstein, E. (1956). Annu. Rev. Plant Physiol. 7, 1.CrossRefGoogle Scholar
Hashimoto, T. (1955). J. Sci. Soil & Manure, Tokyo, 26, 139.Google Scholar
Husband, A. D. & Godden, W. (1927). Analyst, 52, 72.CrossRefGoogle Scholar
Iler, R. K. (1955). The Colloid Chemistry of Silica and Silicates. New York: Cornell University, Ithaca.CrossRefGoogle Scholar
van Italie, Th. B. (1938). Soil Sci. 46, 175.CrossRefGoogle Scholar
Kitson, R. E. & Mellon, M. G. (1944). Industr. Engng Chem. (Analyt.), 16, 379.Google Scholar
Lucas, R. E. & Scarseth, G. D. (1947). J. Amer. Soc. Agron. 39, 887.CrossRefGoogle Scholar
McKeague, J. A. & Cline, M. G. (1963). Canad. J. Soil Sci. 43, 70.CrossRefGoogle Scholar
Scharrer, K. & Jung, J. (1955a). Z. PflErnähr. Düng. 71, 76.Google Scholar
Scharrer, K. & Jung, J. (1955b). Z. PflErnähr. Düng. 71, 97.Google Scholar
Scharrer, K. & Jung, J. (1957). Plant & Soil, 9, 49.CrossRefGoogle Scholar
Scott, R. O. (1960). J. Sci. Fd Agric. 11, 584.Google Scholar
Smith, P. F., Reuther, W., Specht, A. W. & Hrnciar, G. (1954). Plant Physiol. 29, 349.Google Scholar
Venkataraman, K. V. & Tejwani, K. G. (1961). Soil Sci. 91, 324.CrossRefGoogle Scholar
Wallace, A., Toth, S. J. & Bear, F. E. (1948). J. Amer. Soc. Agron. 40, 80.CrossRefGoogle Scholar
Woodbridge, C. G. (1955). Canad. J. Agric. Sci. 35, 350.Google Scholar
Yofe, J.Finkelstein, R. (1958). Analyt. Chim. Acta, 19, 166.Google Scholar
York, E. T., Bradfield, R. & Peach, M. (1954). Soil Sci. 77, 53.CrossRefGoogle Scholar