Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:40:18.264Z Has data issue: false hasContentIssue false

Changes in crude protein fractions of forage legumes during the spring growth and summer regrowth period

Published online by Cambridge University Press:  30 March 2012

M. KRAWUTSCHKE*
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
J. KLEEN
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
N. WEIHER
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
R. LOGES
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
F. TAUBE
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
M. GIERUS
Affiliation:
Institute of Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: mkrawutschke@email.uni-kiel.de

Summary

Only a few previous studies have analysed the crude protein (CP) fractions of the Cornell Net Carbohydrate and Protein System during the growth period of forage legumes. The objective of the present study was to investigate the changes in CP fractions during the spring growth and summer–autumn regrowth period of five forage legume species (alfalfa (also known as lucerne, Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), kura clover (Trifolium ambiguum M.B.), red clover (Trifolium pratense L.) and white clover (Trifolium repens L.)) grown in binary mixtures with perennial ryegrass (Lolium perenne L.) and also in pure stands (two red clover cultivars). Additionally, the specific polyphenol oxidase (PPO) activity was measured photometrically in the leaves of pure red clover swards. In both pure and mixed cropping, CP fraction A increased with advancing maturity, except for the legumes from mixed cropping in the summer–autumn growth period 2004 and 2005. The variation of CP fraction A was mostly positively related to the N yield and the amount of dinitrogen fixation. Although CP fraction A of pure red clover was negatively correlated with the specific PPO activity in the spring growth period, the specific PPO activity was less relevant for the variation of CP fraction A with respect to the whole growing season. CP fraction B generally made up the largest proportion of the CP. Pure red clover stands showed reducing amounts of CP fraction C during the growth period, whereas in legumes grown with ryegrass an increase was usually observed. Despite these differences, there was generally an increase of CP fraction C when the content of non-structural carbohydrates decreased. Red clover and birdsfoot trefoil herbage contained the highest proportions of CP fraction C in the CP, regardless of growth period and year. In conclusion, red clover and birdsfoot trefoil had a more favourable CP composition for ruminant nutrition compared to the other legume species, and in red clover this could not be clearly attributed to the specific PPO activity.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andueza, D., Delgado, I. & Muñoz, F. (2012). Variation of digestibility and intake by sheep of lucerne (Medicago sativa L.) hays cut at sunrise or sunset. Journal of Agricultural Science, Cambridge 150, 263270.CrossRefGoogle Scholar
Bebawi, F. F. & Naylor, R. E. L. (1981). Performance of pure and mixed stands of forage grasses at the establishment phase. I. Two and three species mixtures. New Phytologist 89, 347356.CrossRefGoogle Scholar
Bittner, S. (2006). When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids 30, 205224.CrossRefGoogle ScholarPubMed
Broderick, G. A. (1995). Desirable characteristics of forage legumes for improving protein utilization in ruminants. Journal of Animal Science 73, 27602773.CrossRefGoogle ScholarPubMed
Broderick, G. A. & Albrecht, K. A. (1997). Ruminal in vitro degradation of protein in tannin-free and tannin-containing forage legume species. Crop Science 37, 18841891.CrossRefGoogle Scholar
Broderick, G. A., Albrecht, K. A., Owens, V. N. & Smith, R. R. (2004). Genetic variation in red clover for rumen protein degradability. Animal Feed Science and Technology 113, 157167.CrossRefGoogle Scholar
Broderick, G. A., Walgenbach, R. P. & Maignan, S. (2001). Production of lactating dairy cows fed alfalfa or red clover silage at equal dry matter or crude protein contents in the diet. Journal of Dairy Science 84, 17281737.CrossRefGoogle ScholarPubMed
Burity, H. A., Ta, T. C., Faris, M. A. & Coulman, B. E. (1989). Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant and Soil 114, 249255.CrossRefGoogle Scholar
Buxton, D. R. (1996). Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Animal Feed Science and Technology 59, 3749.CrossRefGoogle Scholar
Caballero, R., Alzueta, C., Oritz, L. T., Rodríguez, M. L., Barro, C. & Rebolé, A. (2001). Carbohydrate and protein fractions of fresh and dried common vetch at three maturity stages. Agronomy Journal 93, 10061013.CrossRefGoogle Scholar
Carlsson, G. & Huss-Danell, K. (2003). Nitrogen fixation in perennial forage legumes in the field. Plant and Soil 253, 353372.CrossRefGoogle Scholar
Coblentz, W. K., Fritz, J. O., Bolsen, K. K., Cochran, R. C. & Fu, L. (1997). Relating sugar fluxes during bale storage to quality changes in alfalfa hay. Agronomy Journal 89, 800807.CrossRefGoogle Scholar
Coblentz, W. K., Fritz, J. O., Fick, W. H., Cochran, R. C. & Shirley, J. E. (1998). In situ dry matter, nitrogen, and fiber degradation of alfalfa, red clover, and eastern gamagrass at four maturities. Journal of Dairy Science 81, 150161.CrossRefGoogle ScholarPubMed
Eickler, B., Gierus, M., Kleen, J. & Taube, F. (2011). Specific polyphenol oxidase activity of red clover (Trifolium pratense L.) and its relation with forage quality in field experiments. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science 61, 3949.Google Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Elizalde, J. C., Merchen, N. R. & Faulkner, D. B. (1999). Fractionation of fiber and crude protein in fresh forages during the spring growth. Journal of Animal Science 77, 476484.CrossRefGoogle ScholarPubMed
Ellenberg, H. (1953). Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Berichte der Deutschen Botanischen Gesellschaft 65, 351362.Google Scholar
Escribano, J., Cabanes, J., Chazarra, S. & García-Carmona, F. (1997). Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. Journal of Agricultural and Food Chemistry 45, 42094214.CrossRefGoogle Scholar
Fagerberg, B. (1988). Phenological development in timothy, red clover and lucerne. Acta Agriculturae Scandinavica 38, 159170.CrossRefGoogle Scholar
Fothergill, M. & Rees, E. (2005). Seasonal differences in polyphenol oxidase activity in red clover. In Sward Dynamics, N-flows and Forage Utilisation in Legume-based Systems, Proceedings of the 2nd COST 852 Workshop, Grado, Italy (Eds Wachendorf, M., Helgadóttir, Á. & Parente, G.), pp. 141144. Brussels: COST.Google Scholar
Gierus, M., Herrmann, A., Kruse, S., Kleen, J. & Taube, F. (2006). Variation in the non-protein nitrogen content (fraction A) of several forages during the growing period. Grassland Science in Europe 11, 595597.Google Scholar
Grabber, J. H. (2008). Mechanical maceration divergently shifts protein degradability in condensed-tannin vs. o-quinone containing conserved forages. Crop Science 48, 804813.CrossRefGoogle Scholar
Grabber, J. H. (2009). Protein fractions in forage legumes containing protein-binding polyphenols: freeze-drying vs. conservation as hay or silage. Animal Feed Science and Technology 151, 324329.CrossRefGoogle Scholar
Heichel, G. H. & Henjum, K. I. (1991). Dinitrogen fixation, nitrogen transfer, and productivity of forage legume–grass communities. Crop Science 31, 202208.CrossRefGoogle Scholar
Hirel, B., Le Gouis, J., Ney, B. & Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 23692387.CrossRefGoogle ScholarPubMed
Hoffman, P. C., Sievert, S. J., Shaver, R. D., Welch, D. A. & Combs, D. K. (1993). In situ dry matter, protein, and fiber degradation of perennial forages. Journal of Dairy Science 76, 26322643.CrossRefGoogle ScholarPubMed
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Jackson, F. S., McNabb, W. C., Barry, T. N., Foo, Y. L. & Peters, J. S. (1996). The condensed tannin content of a range of subtropical and temperate forages and the reactivity of condensed tannin with ribulose-1,5-bis-phosphate carboxylase (Rubisco) protein. Journal of the Science of Food and Agriculture 72, 483492.3.0.CO;2-G>CrossRefGoogle Scholar
Jørgensen, F. V., Jensen, E. S. & Schjoerring, J. K. (1999). Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution method. Plant and Soil 208, 293305.CrossRefGoogle Scholar
Julier, B., Guines, F., Emile, J.-C. & Huyghe, C. (2003). Variation in protein degradability in dried forage legumes. Animal Research 52, 401412.CrossRefGoogle Scholar
Kingston-Smith, A. H., Bollard, A. L., Armstead, I. P., Thomas, B. J. & Theodorou, M. K. (2003). Proteolysis and cell death in clover leaves is induced by grazing. Protoplasma 220, 119129.CrossRefGoogle ScholarPubMed
Kleen, J., Taube, F. & Gierus, M. (2011). Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems. Journal of Agricultural Science, Cambridge 149, 7384.CrossRefGoogle Scholar
Ledgard, S. F. & Steele, K. W. (1992). Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil 141, 137153.CrossRefGoogle Scholar
Lee, M. R. F., Theobald, V. J., Tweed, J. K. S., Winters, A. L. & Scollan, N. D. (2009). Effect of feeding fresh or conditioned red clover on milk fatty acids and nitrogen utilization in lactating dairy cows. Journal of Dairy Science 92, 11361147.CrossRefGoogle ScholarPubMed
Lee, M. R. F., Winters, A. L., Scollan, N. D., Dewhurst, R. J., Theodorou, M. K. & Minchin, F. R. (2004). Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. Journal of the Science of Food and Agriculture 84, 16391645.CrossRefGoogle Scholar
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Linser, H., Lach, G. & Titze, L. (1968). System-growth and product-growth in wheat and radish. Zeitschrift für Pflanzenernährung und Bodenkunde 121, 199211.CrossRefGoogle Scholar
Machacek, K. J. & Kononoff, P. J. (2009). The relationship between acid detergent insoluble nitrogen and nitrogen digestibility in lactating dairy cattle. Professional Animal Scientist 25, 701708.CrossRefGoogle Scholar
Matheis, G. & Whitaker, J. R. (1984). Modification of proteins by polyphenol oxidase and peroxidase and their products. Journal of Food Biochemistry 8, 137162.CrossRefGoogle Scholar
Nieri, B., Canino, S., Versace, R. & Alpi, A. (1998). Purification and characterization of an endoprotease from alfalfa senescent leaves. Phytochemistry 49, 643649.CrossRefGoogle Scholar
Opitz von Boberfeld, W. & Biskupek, B. (1995). The influence of interspecific competition in a grass–clover mixture on nutritional value. Journal of Agronomy and Crop Science 175, 355364.Google Scholar
Parveen, I., Threadgill, M. D., Moorby, J. M. & Winters, A. (2010). Oxidative phenols in forage crops containing polyphenol oxidase enzymes. Journal of Agricultural and Food Chemistry 58, 13711382.CrossRefGoogle ScholarPubMed
Peyraud, J. L., Le Gall, A. & Lüscher, A. (2009). Potential food production from forage legume-based-systems in Europe: an overview. Irish Journal of Agricultural and Food Research 48, 115135.Google Scholar
Reinhardt, F. & Soeder, H. (2001). dtv Atlas Mathematik. Munich: Deutscher Taschenbuch Verlag.Google Scholar
Rochon, J. J., Doyle, C. J., Greef, J. M., Hopkins, A., Molle, G., Sitzia, M., Scholefield, D. & Smith, C. J. (2004). Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects. Grass and Forage Science 59, 197214.CrossRefGoogle Scholar
Schubert, S. (1995). Nitrogen assimilation by legumes – processes and ecological limitations. Fertilizer Research 42, 99107.CrossRefGoogle Scholar
Seguin, P., Mustafa, A. F. & Sheaffer, C. C. (2002). Effects of soil moisture deficit on forage quality, digestibility, and protein fractionation of kura clover. Journal of Agronomy and Crop Science 188, 260266.CrossRefGoogle Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle ScholarPubMed
Sullivan, M. L. & Hatfield, R. D. (2006). Polyphenol oxidase and o-diphenols inhibit postharvest proteolysis in red clover and alfalfa. Crop Science 46, 662670.CrossRefGoogle Scholar
Tamminga, S. (1996). A review on environmental impacts of nutritional strategies in ruminants. Journal of Animal Science 74, 31123124.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd edn. Ithaca, NY: Cornell University Press.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Vance, C. P. (2008). Carbon and nitrogen metabolism in legume nodules. In Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress (Eds Dilworth, M. J., James, E. K., Sprent, J. I. & Newton, W. E.), 7, pp. 293320. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Winters, A. L., Minchin, F. R., Michaelson-Yeates, T. P. T., Lee, M. R. F. & Morris, P. (2008). Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. Journal of Agricultural and Food Chemistry 56, 28172824.CrossRefGoogle Scholar