Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T07:30:12.866Z Has data issue: false hasContentIssue false

The distance from tree legumes in silvopastoral systems modifies the litter in grass-composed pastures

Published online by Cambridge University Press:  08 April 2024

Amanda Maria Gallindo dos Santos
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Jose Carlos Batista Dubeux Jr
Affiliation:
University of Florida, North Florida Research and Education Center, Marianna, FL 32351, USA
Mércia Virginia Ferreira dos Santos
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Suellen Brandão de Miranda Costa
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Diego de Lima Côelho
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Erick Rodrigo da Silva Santos
Affiliation:
University of Alberta, Edmonton, AB, CA T6G 2R3, Canada
Naligia Gomes de Miranda e Silva
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Bárbara Marcélia Martins de Oliveira
Affiliation:
Universidade Federal Rural de Pernambuco, Recife, PE 55.810-700, Brazil
Valéria Xavier de Oliveira Apolinário
Affiliation:
Universidade Estadual do Maranhão, São Luís, MA 65.235-000, Brazil
Janerson José Coelho*
Affiliation:
Universidade Estadual do Maranhão, São Luís, MA 65.235-000, Brazil
*
Corresponding author: Janerson José Coelho; Email: janersoncoelhozoo@gmail.com

Abstract

The use of silvopastoral systems with tree legumes is a viable alternative to recover and develop pastures, as they add N to the system influencing pasture growth. This study hypothesized that the herbage and litter of signalgrass (Urochloa decumbens Stapf) is affected by legume trees in the pasture. Treatments were composed of (1) signalgrass + Mimosa caesalpiniifolia Benth.; (2) signalgrass + Gliricidia sepium Jacq.; and (3) signalgrass monoculture. The 3-year experiment followed a randomized complete block design with three replications. Tree legumes were planted in double rows (15 × 1 × 0.5 m), in 1 ha paddocks. Litter samples were taken in five distance points (0, 1.8, 3.7, 5.6 and 7.5 m) perpendicular to tree legume rows. Signalgrass was taller at longer distances from the trees (P < 0.05). Signalgrass height differed between treatments, with taller signalgrass found in pastures mixed with G. sepium (15.6 cm) compared to M. caesalpiniifolia (9 cm) (P < 0.05). Herbage N content decreased with increasing distance from tree rows (P < 0.05). Litter N content followed a similar pattern, ranging from 23 g/kg under the trees to 12 g/kg at 7.5 m away from tree rows. Signalgrass did not grow under the tree crown (0–1.8 m), especially when intercropped with M. caesalpiniifolia. The findings of this study suggest that the type of legume trees used in the silvopastoral system has the potential to modify the pattern of grass growth and content of N in pasture litter.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, EM, Kyriazopoulos, AP, Parissi, ZM, Kostopoulou, P, Karatassiou, M, Anjalanidou, K and Katsouta, C (2014) Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agroforestry Systems 88, 287299.CrossRefGoogle Scholar
Apolinário, VXO, Dubeux, JCB, Lira, MA, Ferreira, RLC, Mello, ACL, Santos, MVF, Sampaio, EVSB and Muir, JP (2015) Tree legumes provide marketable wood and add nitrogen in warm-climate silvopasture systems. Agronomy Journal 107, 19151921.CrossRefGoogle Scholar
Apolinário, VXO, Dubeux, JCB, de Lira, MA, Sampaio, EVSB, de Amorim, SO, de e Silva, NGM and Muir, JP (2016) Arboreal legume litter nutrient contribution to a tropical silvopasture. Agronomy Journal 108, 24782484.CrossRefGoogle Scholar
Baldissera, TC, da Silveira Pontes, L, Giostri, AF, Barro, RS, Lustosa, SBC, de Moraes, A and de Faccio Carvalho, PC (2016) Sward structure and relationship between canopy height and light interception for tropical C4 grasses growing under trees. Crop and Pasture Science 67, 11991207.CrossRefGoogle Scholar
Barnes, P, Wilson, BR, Reid, N, Bayerlein, L, Koen, TB and Olupot, G (2015) Examining the impact of shade on above-ground biomass and normalized difference vegetation index of C3 and C4 grass species in North-Western NSW, Australia. Grass and Forage Science 70, 324334.CrossRefGoogle Scholar
Bayala, J and Prieto, I (2020) Water acquisition, sharing and redistribution by roots: applications to agroforestry systems. Plant and Soil 453, 1728.CrossRefGoogle Scholar
Bernardino, FS and Garcia, R (2010) Sistemas silvipastoris. Pesquisa Florestal Brasileira 0, 77.Google Scholar
Bezerra Neto, E and Barreto, LP (2004) Métodos de análises químicas em plantas. Recife: uFRPE, 165.Google Scholar
Cabral, FA (2013) Ciclagem de nutrientes em sistemas silvipastoris na zona da mata de Pernambuco 2013 (Dissertation). Universidade Federal Rural de Pernambuco, Recife, Brazil.Google Scholar
Caldas, GG, dos Santos, MVF, Ferreira, RLC, de Lira Junior, MA, de Lira, MA and Saraiva, FM (2009) Efeito da fertilização fosfatada na produção de raízes, liteira e nodulação de Mimosa caesalpiniifolia benth. Revista Árvore 33, 237244.CrossRefGoogle Scholar
Chaer, GM, Resende, AS, Campello, EFC, De Faria, SM, Boddey, RM and Schmidt, S (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology 31, 139149.CrossRefGoogle ScholarPubMed
Chourasiya, D, Sharma, MP, Maheshwari, HS, Ramesh, A, Sharma, SK and Adhya, TK (2017) Microbial diversity and soil health in tropical agroecosystems. In Adhya, TK, Mishra, BB, Annapurna, K, Verma, DK and Kumar, U (eds), Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction. London: Springer, pp. 1935.Google Scholar
Coêlho, DL (2016) Características estruturais e produtivas de Brachiaria decumbens Stapf. em monocultivo e em sistemas silvipastoris, na Zona da Mata de Pernambuco (Dissertation). Universidade Federal Rural de Pernambuco, Recife, Brazil.Google Scholar
Costa, SBdM, de Mello, ACL, Dubeux, JCB, dos Santos, MVF, de Lira, MA, Oliveira, JTC and Apolinário, VXO (2016) Livestock performance in warm-climate silvopastures using tree legumes. Agronomy Journal 108, 20262035.CrossRefGoogle Scholar
Dias, PF, Souto, SM, Resende, AS, Urquiaga, S, Rocha, GP, Moreira, JF and Franco, AA (2007) Transferência do N fixado por leguminosas arbóreas para o capim Survenola crescido em consórcio. Ciência Rural 37, 352356.CrossRefGoogle Scholar
Dubeux Junior, JCB, Muir, JP, de Apolinário, VXO, Nair, PKR, de Lira, MA and Sollenberger, LE (2017) Tree legumes: an underexploited resource in warm-climate silvopastures. Revista Brasileira de Zootecnia 46, 689703.CrossRefGoogle Scholar
Fabrice, CES, Soares Filho, CV, Pinto, MF, Perri, SHV, Cecato, U and Mateus, GP (2015) Recuperação de pastagens de Brachiaria decumbensdegradada com introdução de Stylosanthes e adubação fosfatada1. Revista Brasileira de Saúde e Produção Animal 16, 758771.CrossRefGoogle Scholar
Farias, SGG de, Santos, DR dos, Freire, AL de O and Silva, RBe (2009) Estresse salino no crescimento inicial e nutrição mineral de gliricídia (Gliricidia sepium (Jacq.) Kunth ex Steud) em solução nutritiva(1). Revista Brasileira de Ciência do Solo 33, 14991505.CrossRefGoogle Scholar
Feltran-Barbieri, R and Féres, JG (2021) Degraded pastures in Brazil: improving livestock production and forest restoration. Royal Society Open Science 8, 201854.CrossRefGoogle ScholarPubMed
Gomes, FJ, Pedreira, CG, Bosi, C, Cavalli, J, Holschuch, SG, Mourão, GB, Pereira, DH and Pedreira, BC (2019) Shading effects on marandu palisadegrass in a silvopastoral system: plant morphological and physiological responses. Agronomy Journal 111, 23322340.CrossRefGoogle Scholar
Gomes da Silva, IA, Dubeux, JCB Jr, De Melo, ACL, Da Cunha, MV, Dos Santos, MVF, Apolinário, VXO and de Freitas, E (2021) Tree legume enhances livestock performance in a silvopasture system. Agronomy Journal 113, 358369.CrossRefGoogle Scholar
Gregory, PJ (1996) Approaches to modelling the uptake of water and nutrients in agroforestry systems. Agroforestry Systems 34, 5165.CrossRefGoogle Scholar
Herrera, AM, de Mello, ACL, de Apolinário, VXO, Dubeux Júnior, JCB, da Silva, VJ, dos Santos, MVF and da Cunha, MV (2020) Decomposition of senescent leaves of signalgrass (Urochloa decumbens Stapf. R. Webster) and arboreal legumes in silvopastoral systems. Agroforestry Systems 94, 22132224.CrossRefGoogle Scholar
Herrera, AM, Mello, ACL, Apolinário, VXO, Dubeux, JCB Jr, Mora-Luna, RE and Freitas, EV (2023) Soil fertility in silvopastoral systems integrating tree legumes with signalgrass (Urochloa decumbens Stapf. R. Webster). Archivos Latinoamericanos de Producción Animal 31, 287298.CrossRefGoogle Scholar
Hewins, DB, Lyseng, MP, Schoderbek, DF, Alexander, M, Willms, WD, Carlyle, CN, Chang, SX and Bork, EW (2018) Grazing and climate effects on soil organic carbon concentration and particle-size association in northern grasslands. Scientific Reports 8, 1336.CrossRefGoogle ScholarPubMed
Holanda, AER, Souza, BC, Carvalho, ECD, Oliveira, RS, Martins, FR, Muniz, CR, Costa, RC and Soares, AA (2019) How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? Plant Biology 21, 10971109.CrossRefGoogle ScholarPubMed
Isaac, ME and Borden, KA (2019) Nutrient acquisition strategies in agroforestry systems. Plant and Soil 444, 119.CrossRefGoogle Scholar
Jalonen, R, Nygren, P and Sierra, J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant, Cell & Environment 32, 13661376.CrossRefGoogle Scholar
Lebrazi, S and Fikri-Benbrahim, K (2022) Potential of tree legumes in agroforestry systems and soil conservation. In Meena, RS and Kumar, S (eds), Advances in Legumes for Sustainable Intensification. Amsterdam: Elsevier (Academic Press), pp. 461482.CrossRefGoogle Scholar
Lima, HNB, Dubeux, JCB, Santos, MVF, Mello, ACL, Lira, MA and Cunha, MV (2018) Soil attributes of a silvopastoral system in Pernambuco Forest Zone. Tropical Grasslands-Forrajes Tropicales 6, 1525.CrossRefGoogle Scholar
Lima, HNB, Dubeux, JCB, Santos, MVF, Mello, ACL, Lira, MA, Cunha, MV, De Freitas, EV and Apolinário, VXDO (2020) Herbage responses of signalgrass under full sun or shade in a silvopasture system using tree legumes. Agronomy Journal 112, 18391848.CrossRefGoogle Scholar
Lira, MA, Freitas, EV, Dubeux Júnior, JCB, Zarate, RMT, Andrade, WB and Farias, I (1995) Avaliação de pastagens de Brachiaria decumbens e Brachiaria humidicola, Rendle, com novilhas, na Zona da Mata de Pernambuco. Revista Brasileira de Zootecnia 24, 243251.Google Scholar
Machado, FA, Bezerra Neto, E, do Nascimento, MPSCB, Silva, LM, Barreto, LP, Nascimento, HTS and Leal, JA (2012) Production and quality of litter of three leguminous tree native of the northeastern Brazil. Archivos de Zootecnia 61, 323334.CrossRefGoogle Scholar
Nesper, M, Bünemann, EK, Fonte, SJ, Rao, IM, Velásquez, JE, Ramirez, B, Hegglin, D, Frossard, E and Oberson, A (2015) Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma 257, 123133.CrossRefGoogle Scholar
Paciullo, DSC, Gomide, CAM, de Castro, CRT, Fernandes, PB, Müller, MD, de Fátima Ávila Pires, M, Fernandes, EN and Xavier, DF (2011a) Productive and nutritional traits of pasture in an agrosilvopastoral system, according to the distance from trees. Pesquisa Agropecuaria Brasileira 46, 11761183.CrossRefGoogle Scholar
Paciullo, DSC, Fernandes, PB, Gomide, CADM, Castro, CRTD, Sobrinho, FDS and Carvalho, CABD (2011b) The growth dynamics in Brachiaria species according to nitrogen dose and shade. Revista Brasileira de Zootecnia 40, 270276.CrossRefGoogle Scholar
Paciullo, DSC, Gomide, CDM, Castro, CD, Maurício, RM, Fernandes, PB and Morenz, MJF (2017) Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass and Forage Science 72, 590600.CrossRefGoogle Scholar
Prescott, CE and Grayston, SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management 309, 1927.CrossRefGoogle Scholar
Santos, HG, JacominE, PKT, Dos Anjos, LHC, De Oliveira, VA, Lumbreras, JF, Coelho, MR, De Almeida, JA, de Araujo Filho, JC, De Oliveira, JB and Cunha, TJF (2018) Sistema Brasileiro de Classificação de Solos. Brasília, DF: Embrapa.Google Scholar
Santos, AMG, Dubeux Junior, JCB, Santos, MVF, Lira, MA, Apolinário, VXO, Costa, SBDM and Santos, ERS (2020) Animal performance in grass monoculture or silvopastures using tree legumes. Agroforestry Systems 94, 615626.CrossRefGoogle Scholar
SAS (1996) Statistical Analysis System. SAS User’s Guide: Statistics. Cary: SAS Institute Inc.Google Scholar
Sattler, D, Seliger, R, Nehren, U, de Torres, FN, da Silva, AS, Raedig, C, Hissa, HR and Heinrich, J (2018) Pasture degradation in South East Brazil: status, drivers and options for sustainable land use under climate change. Climate Change Management, 317.CrossRefGoogle Scholar
Schroth, G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry Systems 43, 534.CrossRefGoogle Scholar
Sierra, J and Nygren, P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biology and Biochemistry 38, 18931903.CrossRefGoogle Scholar
Silva, JVC (2018) Participação de leguminosas herbáceas em pastagens consorciadas com Brachiaria decumbens stapf, Itambé PE. Master thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil.Google Scholar
Silva, AB, Lira, MA Jr., Dubeux, JCB Jr., Figueiredo, MVB and Vicentin, RP (2013) Soil litter stock and fertility after planting leguminous shrubs and forage trees on degraded signal grass pasture. Revista Brasileira de Ciencia do Solo 37, 502511.CrossRefGoogle Scholar
Sollenberger, LE, Moore, JE, Allen, VG and Pedreira, CGS (2005) Reporting forage allowance in grazing experiments. Crop Science 45, 896900.CrossRefGoogle Scholar
Sul, WJ, Asuming-Brempong, S, Wang, Q, Tourlousse, DM, Penton, CR, Deng, Y, Rodrigues, JLM, Adiku, SGK, Jones, JW, Zhou, J, Cole, JR and Tiedje, JM (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biology and Biochemistry 65, 3338.CrossRefGoogle Scholar
Thilakarathna, MS, McElroy, MS, Chapagain, T, Papadopoulos, YA and Raizada, MN (2016) Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agronomy for Sustainable Development 36, 116.Google Scholar
Thomas, RL, Sheard, RW and Moyer, JR (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion 1. Agronomy Journal 59, 240243.CrossRefGoogle Scholar
Tian, Q, Taniguchi, T, Shi, WY, Li, G, Yamanaka, N and Du, S (2017) Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Reports 7, 45289.CrossRefGoogle ScholarPubMed
Vasques, ICF, Souza, AA, Morais, EG, Benevenute, PAN, de Silva, LCMd, Homem, BGC, Casagrande, DR and Silva, BM (2019) Improved management increases carrying capacity of Brazilian pastures. Agriculture, Ecosystems and Environment 282, 3039.CrossRefGoogle Scholar
Xavier, DF, da Silva Lédo, FJ, de Campos Paciullo, DS, de Fátima Ávila Pires, M and Boddey, RM (2011) Dinâmica da serapilheira em pastagens de braquiária em sistema silvipastoril e monocultura. Pesquisa Agropecuária Brasileira 46, 12141219.CrossRefGoogle Scholar
Supplementary material: File

Santos et al. supplementary material

Santos et al. supplementary material
Download Santos et al. supplementary material(File)
File 14.6 KB