Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T10:33:08.425Z Has data issue: false hasContentIssue false

An Assessment of the Climate Damage Costs of European Short-Lived Climate Forcers

Published online by Cambridge University Press:  08 June 2023

Stefan Åström*
Affiliation:
IVL Swedish Environmental Research Institute, Stockholm, Sweden
Lovisa Källmark
Affiliation:
IVL Swedish Environmental Research Institute, Stockholm, Sweden
*
Corresponding author: Stefan Åström; Email: stefan.astrom@anthesisgroup.com

Abstract

In addition to effects from greenhouse gases, climate change is affected by short-lived climate forcers (SLCF). These are often co-emitted with carbon dioxide, and some are regulated air pollutants. In the governance of these pollutants, established estimates of damage costs of pollution inform benefit–cost analyses. However, climate change impact of SLCFs is omitted from these estimates. The purpose of this study is to calculate economic damage costs of air pollutants’ effect on climate change and compare these with established damage costs. Focus is on European emissions governed in the EU National Emission Reduction Commitments Directive during 2020–2050. We use well-known SLCF emission metrics and multiply with literature values on social costs of methane to calculate climate damage costs of SLCFs. The results indicate that average absolute climate damage costs are highest for black carbon ($59,500/ton in 2050) and lowest for nonmethane volatile organic compounds ($661/ton). Our indicative values are likely underestimations. Indicative climate damage costs are usually lower than established damage costs, with notable exceptions. We propose that more detailed studies are necessary, and that inclusion of climate damage costs into economic valuation of SLCFs is important for future air pollution and climate benefit–cost analyses.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Society for Benefit-Cost Analysis

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamaas, B., Berntsen, T. K., Fuglestvedt, J. S., Shine, K. P., and Bellouin, N.. 2016. “Regional Emission Metrics for Short-Lived Climate Forcers from Multiple Models.” Atmospheric Chemistry and Physics, 16(11): 74517468.CrossRefGoogle Scholar
Aamaas, B., Peters, G. P., and Fuglestvedt, J. S.. 2013. “Simple Emission Metrics for Climate Impacts.” Earth System Dynamics, 4(1): 145170.CrossRefGoogle Scholar
Allen, M. R., Peters, G. P., Shine, K. P., Azar, C., Balcombe, P., Boucher, O., Cain, M., Ciais, P., Collins, W., Forster, P. M., Frame, D. J., Friedlingstein, P., Fyson, C., Gasser, T., Hare, B., Jenkins, S., Hamburg, S. P., Johansson, D. J. A., Lynch, J., Macey, A., Morfeldt, J., Nauels, A., Ocko, I., Oppenheimer, M., Pacala, S. W., Pierrehumbert, R., Rogelj, J., Schaeffer, M., Schleussner, C. F., Shindell, D., Skeie, R. B., Smith, S. M., and Tanaka, K. 2022. “Indicate Separate Contributions of Long-Lived and Short-Lived Greenhouse Gases in Emission Targets.” Npj Climate and Atmospheric Science, 5(1): 5.CrossRefGoogle ScholarPubMed
Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., and Macey, A. H.. 2018. “A Solution to the Misrepresentations of CO2-Equivalent Emissions of Short-Lived Climate Pollutants Under Ambitious Mitigation.” npj Climate and Atmospheric Science, 1(1): 16.CrossRefGoogle Scholar
Amann, M., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Kiesewetter, G., Klimont, Z., Rafaj, P., Schöpp, W., Wagner, F., Winiwarter, W., Holland, M. and Vandyck, T. (2020). Support to the Development of the Second Clean Air Outlook. Available at https://circabc.europa.eu/ui/group/cd69a4b9-1a68-4d6c-9c48-77c0399f225d/library/79bf53a9-b6d9-4a4a-a4b5-433101462e42/details.Google Scholar
Anthoff, D. and Tol, R. S. J. 2014. The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), Technical Description version 3.9.Google Scholar
Åström, S. and Johansson, D. J. A.. 2019. “The Choice of Climate Metric is of Limited Importance When Ranking Options for Abatement of Near-Term Climate Forcers.” Climatic Change, 154(3–4): 401416.CrossRefGoogle Scholar
Atkinson, G., Braathen, N. A., Groom, B., and Mourato, S. (2018). Cost-Benefit Analysis and the Environment - Further Developments and Policy Use. Paris, France: OECD Publishing.Google Scholar
Bond, T. C., Zarzycki, C., Flanner, M. G., and Koch, D. M.. 2011. “Quantifying Immediate Radiative Forcing by Black Carbon and Organic Matter with the Specific Forcing Pulse.” Atmospheric Chemistry and Physics, 11: 15051525.CrossRefGoogle Scholar
Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A., Smith, S. M., and Allen, M. R.. 2013. “The Role of Short-Lived Climate Pollutants in Meeting Temperature Goals.” Nature Climate Change, 3(12): 10211024.CrossRefGoogle Scholar
Cain, M., Lynch, J., Allen, M. R., Fuglestvedt, J. S., Frame, D. J., and Macey, A. H.. 2019. “Improved Calculation of Warming-Equivalent Emissions for Short-Lived Climate Pollutants.” NPJ Climate and Atmospheric Science, 2: 29.CrossRefGoogle ScholarPubMed
Carleton, T. and Greenstone, M.. 2021. Updating the United States Government’s Social Cost of Carbon. Energy Policy Institute at the University of Chicago.CrossRefGoogle Scholar
Collins, W. J., Frame, D. J., Fuglestvedt, J. S., and Shine, K. P.. 2020. “Stable Climate Metrics for Emissions of Short and long-Lived Species—Combining Steps and Pulses.” Environmental Research Letters, 15(2): 024018.CrossRefGoogle Scholar
Collins, W. J., Fry, M. M., Yu, H., Fuglestvedt, J. S., Shindell, D. T., and West, J. J.. 2013. “Global and Regional Temperature-Change Potentials for Near-Term Climate Forcers.” Atmospheric Chemistry and Physics, 13(5): 24712485.CrossRefGoogle Scholar
Dhakal, S., Minx, J. C., Toth, F. L., Abdel-Aziz, A., Meza, M. J. F., Hubacek, K., Jonckheere, I. G. C., Kim, Y.-G., Nemet, G. F., Pachauri, S., Tan, X., and Wiedmann, T. 2022. “Chapter 2: Emissions Trends and Drivers.” In Amon, B. and Stern, D. I. (Eds.) Climate Change 2022: Mitigation of Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Errickson, F. C., Keller, K., Collins, W. D., Srikrishnan, V., and Anthoff, D.. 2021. “Equity is More Important for the Social Cost of Methane than Climate Uncertainty.” Nature, 592(7855): 564570.CrossRefGoogle ScholarPubMed
Forster, P., Storelvmo, T., Armour, K. K., Collins, W. W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H. 2021. “The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity.” In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.Google Scholar
Hänsel, M. C., Drupp, M. A., Johansson, D. J. A., Nesje, F., Azar, C., Freeman, M. C., Groom, B., and Sterner, T.. 2020. “Climate Economics Support for the UN Climate Targets.” Nature Climate Change, 10(8): 781789.CrossRefGoogle Scholar
Holland, M. 2014. Cost-Benefit Analysis of Final Policy Scenarios for the EU Clean Air Package - Version 2.Google Scholar
Hope, C. 2011. The PAGE09 Integrated Assessment Model: A Technical Description.Google Scholar
Howard, P. 2014. Omitted Damages: What’s Missing From the Social Cost of Carbon.Google Scholar
Interagency Working Group on Social Cost of Greenhouse Gases. 2021. Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 13990.Google Scholar
Karlsson, M., Alfredsson, E., and Westling, N.. 2020. “Climate Policy Co-Benefits: A Review.” Climate Policy, 20(3): 292316.CrossRefGoogle Scholar
Kikstra, J. S., Waidelich, P., Rising, J., Yumashev, D., Hope, C., and Brierley, C. M.. 2021. “The Social Cost of Carbon Dioxide Under Climate-Economy Feedbacks and Temperature Variability.” Environmental Research Letters, 16(9): 094037.CrossRefGoogle Scholar
Kuylenstierna, J. and Hicks, K. 2008. Benefits of Integrating Air Pollution and Climate Change Policy, Stockholm Environment Institute.Google Scholar
Kuylenstierna, J. C. I., Zucca, M. C., Amann, M., Cardenas, B., Chambers, B., Klimont, Z., Hicks, K., Mills, R., Molina, L., Murray, F., Pearson, P., Sethi, S., Shindell, D., Sokona, Y., Terry, S., Vallack, H., van Dingenen, R., Williams, M., Wilson, C., and Zusman, E. 2011. Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers.Google Scholar
Maas, R. and Grennfelt, P.. 2016. “Towards Cleaner Air - Scientific Assessment Report 2016.” In Maas, R and Grennfelt, P. (Eds.) Oslo, EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution. Oslo, Norway: EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution.Google Scholar
Mar, K. A., Unger, C., Walderdorff, L., and Butler, T.. 2022. “Beyond CO2 Equivalence: The Impacts of Methane on Climate, Ecosystems, and Health.” Environmental Science & Policy, 134: 127136.CrossRefGoogle Scholar
Martín, J. G. 2021. Social Cost of Methane: An estimation using an Integrated Assessment Model. Master, Chalmers University of Technology.Google Scholar
Martín, J. G., Azar, C., Johansson, D. J., and Sterner, T. 2022 The Social Cost of Methane, Research Square Platform LLC.CrossRefGoogle Scholar
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H. 2013a. “Anthropogenic and Natural Radiative Forcing.” In Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Zhang, H., Aamaas, B., Boucher, O., Dalsøren, S. B., Daniel, J. S., Forster, P., Granier, C., Haigh, J., Hodnebrog, Ø., Kaplan, J. O., Marston, G., Nielsen, C. J., O’Neill, B. C., Peters, G. P., Pongratz, J., Ramaswamy, V., Roth, R., Rotstayn, L., Smith, S. J., Stevenson, D., Vernier, J.-P., Wild, O., Young, P., Jacob, D., Ravishankara, A. R., and Shine, K.. 2013b. “8 Anthropogenic and Natural Radiative Forcing.” In Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: 82. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
Nordhaus, W. D. 2017. “Revisiting the Social Cost of Carbon.” Proceedings of the National Academy of Sciences of the United States, 114(7): 15181523.CrossRefGoogle ScholarPubMed
Nordhaus, W. 2018. “Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies.” American Economic Journal: Economic Policy, 10(3): 333360.Google Scholar
OECD. 2022. Exchange Rates.Google Scholar
Pearce, D. 2003. “The Social Cost of Carbon and its Policy Implications.” Oxford Review of Economic Policy, 19(3): 362384.CrossRefGoogle Scholar
Pezzey, J. C. V. 2019. “Why the Social Cost of Carbon Will Always be Disputed.” WIREs Climate Change, 10(1): e558.CrossRefGoogle Scholar
Pindyck, R. S. 2013. Climate Change Policy: What do the Models Tell Us?CrossRefGoogle Scholar
Pindyck, R. S. 2017. “The Use and Misuse of Models for Climate Policy.” Review of Environmental Economics and Policy, 11(1): 100114.CrossRefGoogle Scholar
Pindyck, R. S. 2019. “The Social Cost of Carbon Revisited.” Journal of Environmental Economics and Management, 94: 140160.CrossRefGoogle Scholar
Rennert, K., Prest, B. C., Pizer, W. A., Newell, R. G., Anthoff, D., Kingdon, C., Rennels, L., Cooke, R., Raftery, A. E., Ševčíková, H., and Errickson, F. 2021. The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates, Resources for the Future.CrossRefGoogle Scholar
Ricke, K., Drouet, L., Caldeira, K., and Tavoni, M.. 2018. “Country-Level Social Cost of Carbon.” Nature Climate Change, 8(10): 895900.CrossRefGoogle Scholar
Sarofim, M. C., Waldhoff, S. T., and Anenberg, S. C.. 2017. “Valuing the Ozone-Related Health Benefits of Methane Emission Controls.” Environmental and Resource Economics, 66(1): 4563.CrossRefGoogle Scholar
Schmale, J., van Aardenne, J., and von Schneidemesser, E.. 2014. “New Directions: Support for Integrated Decision-Making in Air and Climate Policies – Development of a Metrics-Based Information Portal.” Atmospheric Environment, 90: 146148.CrossRefGoogle Scholar
Schucht, S., Real, E., Létinois, L., Colette, A., Holland, M., Spadaro, J. V., Opie, L., Brook, R., Garland, L., and Gibbs, M. 2021. Costs of Air Pollution from European Industrial Facilities 2008–2017.Google Scholar
Shindell, D. T. 2015. “The social cost of atmospheric release.” Climatic Change, 130(2): 313326.CrossRefGoogle Scholar
Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E. (2009). “Improved Attribution of Climate Forcing to Emissions.” Nature, 326: 716718.Google ScholarPubMed
Shindell, D. T., Fuglestvedt, J. S., and Collins, W. J.. 2017. “The Social Cost of Methane: Theory and Applications.” Faraday Discuss, 200: 429451.CrossRefGoogle ScholarPubMed
Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Hoglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D. 2012. “Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security.” Science, 335: 183189.CrossRefGoogle ScholarPubMed
Shindell, D., Schulz, M., Ming, Y., Takemura, T., Faluvegi, G., and Ramaswamy, V.. 2010. “Spatial Scales of Climate Response to Inhomogeneous Radiative Forcing.” Journal of Geophysical Research, 115: D19110.CrossRefGoogle Scholar
Shoemaker, J. K., Schrag, D. P., Molina, M. J., and Ramanathan, V. (2013). “What Role for Short-Lived Climate Pollutants in Mitigation Policy.” Science, 342: 13231324.CrossRefGoogle ScholarPubMed
Smith, M. A., Cain, M., and Allen, M. R.. 2021. “Further Improvement of Warming-Equivalent Emissions Calculation.” npj Climate and Atmospheric Science, 4(1): 19.CrossRefGoogle Scholar
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi, S., Gallardo, L., Scharr, A. K., Klimont, Z., Liao, H., Unger, N., and Zanis, P.. 2021. “Short-Lived Climate Forcers. Climate Change 2021: The Physical Science Basis.” In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B. (Eds.) Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
UNECE 2021. Prioritizing Reductions of Particulate Matter from Sources that are also Significant Sources of Black Carbon – Analysis and Guidance.Google Scholar
Van Dingenen, R., Crippa, M., Maenhout, G., Guizzardi, D., and Dentener, F. (2018). Global Trends of Methane Emissions and Their Impacts on Ozone Concentrations.Google Scholar
van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., van Ruijven, B., Wonink, S., and van Houdt, R.. 2007. “Stabilizing Greenhouse Gas Concentrations at Low Levels: An Assessment of Reduction Strategies and Costs.” Climatic Change, 81(2): 119159.CrossRefGoogle Scholar
Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M., and Van Dingenen, R.. 2020. “Quantifying Air Quality Co-Benefits of Climate Policy Across Sectors and Regions.” Climatic Change, 163(3): 15011517.CrossRefGoogle Scholar
Waldhoff, S., Anthoff, D., Rose, S., and Tol, R. S. J.. 2014. “The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND.” Economics, 8(1): 20140031.CrossRefGoogle Scholar
Wang, P., Deng, X., Zhou, H., and Yu, S.. 2019. “Estimates of the Social Cost of Carbon: A Review Based on Meta-Analysis.” Journal of Cleaner Production, 209: 14941507.CrossRefGoogle Scholar
Yumashev, D. 2020. PAGE – ICE Integrated Assessment Models. Integrated Assessment Models and Others Climate Policy Tools, Oeconomia Editions.Google Scholar
Supplementary material: File

Åström and Källmark supplementary material

Åström and Källmark supplementary material 1

Download Åström and Källmark supplementary material(File)
File 32.5 KB
Supplementary material: PDF

Åström and Källmark supplementary material

Åström and Källmark supplementary material 2

Download Åström and Källmark supplementary material(PDF)
PDF 3.3 MB