Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T07:22:16.169Z Has data issue: false hasContentIssue false

Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk

Published online by Cambridge University Press:  19 December 2013

Silvina A Pujato
Affiliation:
Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829 (3000), Santa Fe, Argentina
Andrea del L Quiberoni
Affiliation:
Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829 (3000), Santa Fe, Argentina
Mario C Candioti
Affiliation:
Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829 (3000), Santa Fe, Argentina
Jorge A Reinheimer
Affiliation:
Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829 (3000), Santa Fe, Argentina
Daniela M Guglielmotti*
Affiliation:
Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829 (3000), Santa Fe, Argentina
*
*For correspondence; e-mail: dgugliel@fiq.unl.edu.ar

Abstract

Cell-free supernatant from Leuconostoc citreum MB1 revealed specific antilisterial activity. Preliminary studies demonstrated the proteinaceous, heat-stable, bacteriocin-like trait of the antimicrobial components present in the supernatant. Determination of the genes encoding bacteriocins by PCR and DNA sequencing led to amplification products highly homologous with leucocin A (found in diverse Leuconostoc species) and UviB (found in Leuc. citreum KM20) sequences. Additionally, antimicrobial activity of cell-free supernatant from Leuc. citreum MB1 was revealed by an inhibition halo of the SDS-PAGE gel subjected to a direct detection using Listeria monocytogenes as indicator strain. Different assays were carried out to assess the capacity of Leuc.citreum MB1 to control List. monocytogenes growth: (i) inactivation kinetics of the pathogen by antilisterial compounds present in concentrated cell-free supernatant from Leuc. citreum MB1, (ii) evaluation of optimal Leuc. citreum MB1 initial concentration to obtain maximum List. monocytogenes ATCC 15313 inhibition, and (iii) biocontrol of List. monocytogenes ATCC 15313 with Leuc. citreum MB1 during growth in milk at refrigeration temperature. According to our results, it is unquestionable that at least one bacteriocin is active in Leuc. citreum MB1, since important antilisterial activity was verified either in its cell-free supernatant or in co-culture experiments. Co-culture tests showed that ∼107 CFU/ml Leuc. citreum MB1 was the optimal initial concentration to obtain maximum pathogen inhibition. Moreover, Leuc. citreum MB1 was able to delay List. monocytogenes growth at refrigerated temperature.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alakomi, HL, Skytta, E, Saarela, M, Mattila-Sandholm, T, Latva-Kala, K & Helander, IM 2000 Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology 66 20012005Google Scholar
Blom, H, Katla, T, Holck, A, Sletten, K, Axelsson, L & Holo, H 1999 Characterization, production, and purification of leucocin H, a two-peptide bacteriocin from Leuconostoc MF215B. Current Microbiology 39 4348Google Scholar
Candioti, MC, Hynes, ER, Perotti, MC & Zalazar, CA 2002 Proteolytic activity of commercial rennets and pure milk-clotting enzymes on whey proteins. Milchwissenschaft 57 546550Google Scholar
Cardamone, L, Quiberoni, A, Mercanti, DJ, Fornasari, ME, Reinheimer, JA & Guglielmotti, DM 2011 Adventitious dairy Leuconostoc strains with interesting technological and biological properties useful for adjunct starters. Dairy Science, Technology 91 457470Google Scholar
Castellano, P, Belfiore, C, Fadda, S & Vignolo, G 2008 A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science 79 483499Google Scholar
Cataldo, G, Conte, MP, Chiarini, F, Seganti, L, Ammendolia, MG, Superti, F & Longhi, C 2007 Acid adaptation and survival of Listeria monocytogenes in Italian-style soft cheeses. Journal of Applied Microbiology 103 185193CrossRefGoogle ScholarPubMed
Cleveland, J, Montville, TJ, Nes, IF & Chikindas, ML 2001 Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology 71 120Google Scholar
Cotter, PD, Hill, C & Ross, RP 2005 Bacteriocins: developing innate immunity for food. Nature Review Microbiology 3 777788Google Scholar
Daba, H, Pandian, S, Gosselin, JF, Simard, RE, Huang, J & Lacroix, C 1991 Detection and Activity of a Bacteriocin Produced by Leuconostoc mesenteroides. Applied and Environmental Microbiology 57 34503455CrossRefGoogle ScholarPubMed
Deegan, LH, Cotter, PD, Hill, C & Ross, P 2006 Bacteriocins: biological tools for biopreservation and shelf-life extension. International Dairy Journal 16 10581071CrossRefGoogle Scholar
Ennahar, S, Sashihara, T, Sonomoto, K & Ishizaki, A 2000 Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiology Reviews 24 85106Google Scholar
Felix, JV, Papathanasopoulos, MA, Smith, AA, von Holy, A & Hastings, JW 1994 Characterization of leucocin B-Ta11a: a bacteriocin from Leuconostoc carnosum Ta11a isolated from meat. Current Microbiology 29 207212Google Scholar
Hastings, JW, Sailer, M, Johnson, K, Roy, KL, Vederas, JC & Stiles, ME 1991 Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. Journal of Bacteriology 173 74917500Google Scholar
Héchard, Y, Dérijard, B, Letellier, F & Cenatiempo, Y 1992 Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. Journal of General Microbiology 138 27252731CrossRefGoogle ScholarPubMed
Héchard, Y, Berjeaud, JM & Cenatiempo, Y 1999 Characterization of the mesB gene and expression of bacteriocins by Leuconostoc mesenteroides Y105. Current Microbiology 39 265269Google ScholarPubMed
Hemme, D & Foucaud-Scheunemann, C 2004 Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Review. International Dairy Journal 14 467494Google Scholar
Kim, JF, Jeong, H, Lee, J-S, Choi, S-H, Ha, M, Hur, C-G, Kim, J-S, Lee, S, Park, H-S, Park, Y-H & Oh, TK 2008 Complete genome sequence of Leuconostoc citreum KM20. Journal of Bacteriology 190 30933094Google Scholar
Kjos, M, Nes, IF & Diep, DB 2011 Mechanisms of Resistance to Bacteriocins Targeting the Mannose Phosphotransferase System. Applied and Environmental Microbiology 77 33353342Google Scholar
Laemmli, UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685CrossRefGoogle ScholarPubMed
Liu, L, O'Conner, P, Cotter, PD, Hill, C & Ross, RP 2008 Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. Journal of Applied Microbiology 104 10591066Google Scholar
Mataragas, M, Metaxopoulos, J, Galiotou, M & Drosinos, EH 2003 Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science 64 265271Google Scholar
Mellefont, LA, McMeekin, TA & Ross, T 2008 Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. International Journal of Food Microbiology 121 157168Google Scholar
Motlagh, AM, Holla, S, Johnson, MC, Ray, B & Field, RA 1992 Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. Food Protection 55 337343Google Scholar
Papathanasopoulos, MA, Krier, F, Revol-Junelles, A-M, Lefebvre, G, Le Caer, JP, von Holy, A & Hastings, JW 1997 Multiple bacteriocin production by Leuconostoc mesenteroides TA33a and other Leuconostoc/Weissella strains. Current Microbiology 35 331335Google Scholar
Pucci, MJ, Vedamuthu, ER, Kunka, BS & Vandenbergh, PA 1988 Inhibition of Listeria monocytogenes by using Bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1·0. Applied and Environmental Microbiology 54 23492353Google Scholar
Revol-Junelles, AM, Mathis, R, Krier, F, Fleury, Y, Delfour, A & Lefebvre, G 1996 Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins. Letters in Applied Microbiology 23 120124Google Scholar
Sawa, N, Okamura, K, Zendo, T, Himeno, K, Nakayama, J & Sonomoto, K 2010 Identification and characterization of novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Journal of Applied Microbiology 109, 282291Google Scholar
Stiles, ME 1994 Bacteriocins produced by Leuconostoc species. Journal of Dairy Science 77 27182724Google Scholar
Trias, R, Badosa, E, Montesinos, E & Bañeras, L 2008 Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology 127 9198Google Scholar
Vignolo, G, Fadda, S, de Kairuz, MN, de Ruiz Holgado, AAP & Oliver, G 1996 Control of Listeria monocytogenes in ground beef by ‘Lactocin 705’, a bacteriocin produced by Lactobacillus casei CRL 705. Short communication. International Journal of Food Microbiology 29 397402Google Scholar
Xiraphi, N, Georgalaki, M, Rantsiou, K, Cocolin, L, Tsakalidou, E & Drosinos, EH 2008 Purification and characterization of the bacteriocin, produced by Leuconostoc mesenteroides E131. Meat Science 80 194203Google Scholar