Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T02:34:19.420Z Has data issue: false hasContentIssue false

Effect of varying enzyme concentration on the action of rennin on whole milk

Published online by Cambridge University Press:  01 June 2009

A. V. Castle
Affiliation:
School of Biological Sciences, The University, Bradford, Yorkshire BD7 1DP
J. V. Wheelock
Affiliation:
School of Biological Sciences, The University, Bradford, Yorkshire BD7 1DP

Summary

The kinetics of the release of glycopeptides by the action of rennin on bovine whole milk have been studied. The initial rate of release of glycopeptides was proportional to the concentration of rennin. Using the integrated form of the Michaelis–Menten equation, values have been obtained for Km and V. These values varied between milk samples from individual cows, and for a single milk sample the value for Km increased with increasing rennin concentration. It is suggested that the Km value is partly dependent on the carbohydrate composition of individual κ-casein molecules.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. (1963). Annls Biol. anim. Biochim. Biophys. 3, 391.CrossRefGoogle Scholar
Armstrong, C. E., Mackinlay, A. G., Hill, R. J. & Wake, R. G. (1967). Biochim. biophys. Acta 140, 123.CrossRefGoogle Scholar
Beeby, R. (1963). J. Dairy Res. 30, 77.CrossRefGoogle Scholar
Castle, A. V. & Wheelock, J. V. (1971). J. Dairy Res. 38, 69.CrossRefGoogle Scholar
Cheeseman, G. C. (1966). In Methods for Determination of Amino Acid Composition of Milk Proteins, proc. conf. 1964, p. 50 (Ed. Brunfeldt, K.). Copenhagen: Danish Institute of Protein Chemistry.Google Scholar
Dixon, M. & Webb, E. C. (1964). Enzymes, 2nd edn, p. 114. London: Longmans.Google Scholar
Foltmann, B. (1959). 15th Int. Dairy Congr., London 2, 655.Google Scholar
Garnier, J. (1963). Biochim. biophys. Acta 66, 366.CrossRefGoogle Scholar
Garnier, J., Mocquot, G. & Ribadeau-Dumas, B. (1967). Paper presented at ‘Meeting on Enzyme Activity and Food Technology’, p. 29, Paris.Google Scholar
Kim, Y. K., Arima, S. & Yasui, T. (1967). Jap. J. zootech. Sci. 38, 62.Google Scholar
McCabe, E. M. (1967). Ph.D. Thesis, Michigan State University.Google Scholar
(Diss. Abstr. (1968). 28, 3622).Google Scholar
MacKinlay, A. G. & Wake, R. G. (1965). Biochim. biophys. Acta 104, 167.CrossRefGoogle Scholar
Nitschmann, H. & Bohren, H. U. (1955). Helv. chim. Acta 38, 1953.CrossRefGoogle Scholar
Pyne, G. T. (1953). Chemy Ind. 72, 302.Google Scholar
Rook, J. A. F. & Wheelock, J. V. (1967). J. Dairy Res. 34, 273.CrossRefGoogle Scholar
Sinkinson, G. & Wheelock, J. V. (1970). Biochim. biophys. Acta 215, 517.CrossRefGoogle Scholar
Varley, H. (1954). Practical Clinical Biochemistry, p. 137. London: Heinemann.Google Scholar
Wake, R. G. (1959). Aust. J. biol. Sci. 12, 479.CrossRefGoogle Scholar
Waugh, D. F. & von Hippel, P. H. (1956). J. Am. Chem. Soc. 78, 4576.CrossRefGoogle Scholar
Wheelock, J. V. & Penney, J. P. (1970). Biochem. J. 119, 12P.CrossRefGoogle Scholar
White, J. C. D. & Davies, D. T. (1958). J. Dairy Res. 25, 267.CrossRefGoogle Scholar