Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T04:25:15.657Z Has data issue: false hasContentIssue false

Lack of evidence for association between the leptin/Sau3AI gene and milk yield traits in Holstein Friesian dairy cattle

Published online by Cambridge University Press:  08 January 2024

Mustafa Kibar*
Affiliation:
Department of Animal Science, Faculty of Agriculture, University of Siirt, Siirt, Turkey
İbrahim Aytekin
Affiliation:
Department of Animal Science, Faculty of Agriculture, University of Selçuk, Konya, Turkey
*
Corresponding author: Mustafa Kibar; Email: mustafakibar@siirt.edu.tr

Abstract

This study aimed to investigate the effect of leptin gene polymorphism and some environmental factors on milk production traits. Blood samples from 212 Holstein Friesian dairy cattle reared on a private farm were used. The intron 2 region of the leptin gene was digested with Sau3AI restriction enzyme using the PCR-RFLP method. A and B alleles and AA, AB, and BB genotype frequencies for the Sau3AI polymorphism were determined as 0.8821 and 0.1179, and 0.764, 0.236 and 0.000, respectively. Chi-square analysis revealed that the leptin gene polymorphism followed the Hardy–Weinberg equilibrium, including the absence of animals with the BB genotype. The effect of leptin gene polymorphism on all milk production traits was insignificant. For milk production traits, direct heritability (ha2) varied between 0.03 ± 0.283 (for the dry period) and 0.50 ± 0.183 (for milk conductivity). Regarding the milking time (MT), the estimated breeding values (EBVs) of cattle with the AA genotype were higher than the AB genotype (P < 0.05). As a result of this study, in the selection program, allele or genotype could not be suggested as a marker for milk yield characteristics except for the possible exception of milking time and its relationship to mastitis incidence.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Janabi, H, Al-Rawi, A and Al-Anbari, N (2018) Genetic polymorphisms of leptin gene associated with production traits in Holstein primiparous cows. Plant Archives 18, 23112316.Google Scholar
Aytekin, İ (2011) Associations between leptin and Pit-1 gene polymorphisms with milk yield and milk composition traits in Brown Swiss cattle raised in Konkular state farm (Ph. D Thesis). Selçuk University.Google Scholar
Boldman, KG, Kriese, LA, Van Vleck, LD, Van Tassell, CP and Kachman, SD (1995) A manual for use of MTDFREML: a set of programs to obtain estimates of variances and covariances. US Department of Agriculture Agricultural Research Service 114, 1116.Google Scholar
Düzgüneş, O, Kesici, T and Gürbüz, F (1983) İstatistik metodlan. Ankara Üniversitesi Ziraat Fakültesi Yayınları. In Turkish.Google Scholar
Ferchichi, MA, Jemmali, B, Amiri, S, Ben Gara, A and Rekik, B (2018) Effect of leptin genetic polymorphism on lameness prevalence in Tunisian Holstein cows. Archives Animal Breeding 61, 305310.Google Scholar
Ghazanfari, S, Nassiry, M and Moussavi, AH 2006 Polymorphism in gene leptin and its relationship to milk production and reproduction traits in Brown Swiss cows. Proceedings of the British Society of Animal Science 206, 90.Google Scholar
Javanmard, A, Khaledi, K, Asadzadeh, N and Solimanifarjam, AR (2010) Detection of polymorphisms in the bovine leptin (LEP) gene: association of single nucleotide polymorphism with breeding value of milk traits in Iranian Holstein cattle. Journal of Molecular genetics 2, 1014.Google Scholar
Liefers, SC, Te Pas, MFW, Veerkamp, RF and Van Der Lende, T (2002) Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers. Journal of Dairy Science 85, 16331638.Google Scholar
Maletić, M, Paprikić, N, Lazarević, M, Hodžić, A, Davidović, V, Stanišić, L and Stanimirović, Z (2019) Insight in leptin gene polymorphism and impact on milk traits in autochtonous Busha cattle. Acta Veterinaria 69, 153163.Google Scholar
Metin Kiyici, J, Arslan, K, Akyuz, B, Kaliber, M, Aksel, EG and Çinar, MU (2019) Relationships between polymorphisms of growth hormone, leptin and myogenic factor 5 genes with some milk yield traits in Holstein dairy cows. International Journal of Dairy Technology 72, 17.Google Scholar
Metin Kiyici, J, Akyüz, B, Kaliber, M, Arslan, K, Aksel, EG and Çinar, MU (2020) LEP and SCD polymorphisms are associated with milk somatic cell count, electrical conductivity and pH values in Holstein cows. Animal Biotechnology 31, 498503.Google Scholar
Minitab (2010) Minitab 16.1.1. for Windows. State College, PA, USA: Minitab Inc.Google Scholar
Moussavi, AH, Ahouei, M, Nassiry, MR and Javadmanesh, A (2006) Association of leptin polymorphisms with production and reproduction traits in Iranian Holstein dairy cows. In Proceedings of the British Society of Animal Science 2006, 8585.Google Scholar
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70, 33213323.Google Scholar
Taniguchi, Y, Itoh, T, Yamada, T and Sasaki, Y (2002) Genomic structure and promoter analysis of the bovine leptin gene. IUBMB Life 53, 131135.Google Scholar
Trakovická, A, Moravčíková, N and Kasarda, R (2013) Genetic polymorphisms of leptin and leptin receptor genes in relation with production and reproduction traits in cattle. Acta Biochimica Polonica 60, 783787.Google Scholar
Vierbauch, T, Peinhopf-Petz, W and Wittek, T (2021) Effects of milking, over-milking and vacuum levels on front and rear quarter teats in dairy cows. Journal of Dairy Research 88, 396400.Google Scholar
Yeh, FC, Yang, RC, Boyle, TB, Ye, ZH and Mao, JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre University of Alberta Canada 10, 295301.Google Scholar
Supplementary material: File

Kibar and Aytekin supplementary material

Kibar and Aytekin supplementary material
Download Kibar and Aytekin supplementary material(File)
File 376.4 KB