Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T06:09:59.527Z Has data issue: false hasContentIssue false

Long-term outcomes of visual motor integration and motor development children with retinopathy of prematurity

Published online by Cambridge University Press:  10 May 2024

Seval Kutlutürk Yıkılmaz*
Affiliation:
Department of Physiotherapy and Rehabilitation, Faculty of Hamidiye Health Sciences, University of Health Sciences, Istanbul, Turkey
Gokhan Celik
Affiliation:
Department of Ophthalmology, Zeynep Kamil Maternity and Children’s Diseases Training and Research Hospital, Istanbul, Turkey
Murat Gunay
Affiliation:
Department of Ophthalmology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
Osman Kizilay
Affiliation:
Department of Ophthalmology, Zeynep Kamil Maternity and Children’s Diseases Training and Research Hospital, Istanbul, Turkey
Zeliha Candan Algun
Affiliation:
Department of Physical Therapy and Rehabilitation, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
*
Corresponding author: S. Kutlutürk Yıkılmaz; Email: seval.kutluturkyikilmaz@sbu.edu.tr

Abstract

Premature infants have a risk of neurodevelopmental deficits. Little is known, however, about how retinopathy of prematurity (ROP) affects visual motor integration (VMI), which is necessary for both fine motor skills and further school abilities. Due to the systemic escape of bevacizumab in the treatment of ROP, concerns regarding the long-term neurodevelopmental effect of the drug have arisen. The aim is to evaluate VMI and motor development long-term outcomes after intravitreal bevacizumab (IVB) injection and laser treatment for ROP. Two groups of premature children were included: Bevacizumab group – 16 premature children who received IVB treatment and laser group – 23 premature children who underwent laser photocoagulation treatment in this single center cross-sectional study. At 2–6 years of age, VMI (Beery–Buktenica Developmental Test), motor development (Peabody Developmental Motor Scales-2), visual acuity, and refractive status were assessed. The incidence of abnormal visual function was significantly higher in bevacizumab group than in laser group (p = 0.022). The incidence of abnormal VMI skill was significantly higher in bevacizumab group than in laser group (p = 0.024). Incidences of abnormal gross, fine, and total motor skills were significantly higher in bevacizumab group compared to laser group (p < 0.05). Premature children who received bevacizumab for ROP demonstrated significantly lower VMI and motor development features than those with laser treatment at preschool age. Although our results suggest the relevance of bevacizumab injection in impaired VMI and motor development outcomes, general level of sickness rather than treatment might be the cause of delayed motor development.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blencowe, H, Lawn, JE, Vazquez, T, Fielder, A, Gilbert, C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013; 74(S1), 3549. DOI: 10.1038/pr.2013.205.CrossRefGoogle ScholarPubMed
Hartnett, ME, Penn, JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 2012; 367(26), 25152526. DOI: 10.1056/NEJMra1208129.CrossRefGoogle ScholarPubMed
Early Treatment For Retinopathy Of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity. Arch Ophthalmol. 2003; 121(12), 16841694. DOI: 10.1001/archopht.121.12.1684.CrossRefGoogle Scholar
Kychenthal, A, Dorta, P, Katz, X. Zone I retinopathy of prematurity: clinical characteristics and treatment outcomes. Retina. 2006; 26(7 Suppl), S11S15. DOI: 10.1097/01.iae.0000244285.79004.e6.CrossRefGoogle Scholar
Travassos, A, Teixeira, S, Ferreira, P, et al. Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Ophthalmic Surg Lasers Imaging. 2007; 38(3), 233237. DOI: 10.3928/15428877-20070501-09.CrossRefGoogle ScholarPubMed
Wu, WC, Yeh, PT, Chen, SN, Yang, CM, Lai, CC, Kuo, HK. Effects and complications of bevacizumab use in patients with retinopathy of prematurity: a multicenter study in taiwan. Ophthalmology. 2011; 118(1), 176183. DOI: 10.1016/j.ophtha.2010.04.018.CrossRefGoogle ScholarPubMed
Mintz-Hittner, HA, Kennedy, KA, Chuang, AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011; 364(7), 603615. DOI: 10.1056/NEJMoa1007374.CrossRefGoogle ScholarPubMed
Malik, S, Vinukonda, G, Vose, LR, et al. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013; 33(2), 411423. DOI: 10.1523/JNEUROSCI.4445-12.2013.CrossRefGoogle ScholarPubMed
Morin, J, Luu, TM, Superstein, R, et al. Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics. 2016; 137(4), e20153218. DOI: 10.1542/peds.2015-3218.CrossRefGoogle ScholarPubMed
Lien, R, Yu, MH, Hsu, KH, et al. Neurodevelopmental outcomes in infants with retinopathy of prematurity and bevacizumab treatment. PLoS One. 2016; 11(1), e0148019. DOI: 10.1371/journal.pone.0148019.CrossRefGoogle ScholarPubMed
Kennedy, KA, Mintz-Hittner, HA. Medical and developmental outcomes of bevacizumab versus laser for retinopathy of prematurity. J AAPOS. 2018; 22(1), 6165.e1. DOI: 10.1016/j.jaapos.2017.10.006.CrossRefGoogle ScholarPubMed
Tsai, CY, Yeh, PT, Tsao, PN, Chung, YE, Chang, YS, Lai, TT. Neurodevelopmental outcomes after bevacizumab treatment for retinopathy of prematurity: a meta-analysis. Ophthalmology. 2021; 128(6), 877888. DOI: 10.1016/j.ophtha.2020.11.012.CrossRefGoogle ScholarPubMed
Tan, H, Blasco, P, Lewis, T, Ostmo, S, Chiang, MF, Campbell, JP. Neurodevelopmental outcomes in preterm infants with retinopathy of prematurity. Surv Ophthalmol. 2021; 66(5), 877891. DOI: 10.1016/j.survophthal.2021.02.012.CrossRefGoogle ScholarPubMed
Pétursdóttir, D, Holmström, G, Larsson, E, Böhm, B. Visual-motor functions are affected in young adults who were born premature and screened for retinopathy of prematurity. Acta Paediatr. 2021; 110(1), 127133. DOI: 10.1111/apa.15378.CrossRefGoogle ScholarPubMed
Zimmermann, DL, Schned, H, Unterasinger, L, et al. Impact of retinopathy of prematurity on visual motor integration. Neonatology. 2023; 1-8(3), 317324. DOI: 10.1159/000529594.CrossRefGoogle Scholar
Beery, KE, Beery, NA. The Beery-Buktenica Developmental Test of Visual-motor Integration (Beery VMI) with Supplemental Developmental Tests of Visual Perception and Motor Coordination and Stepping Stones Age Norms: Administration, Scoring and Teaching Manual, 2010. NCS Pearson, Minneapolis, MN.Google Scholar
Dankert, HL, Davies, PL, Gavin, WJ. Occupational therapy effects on visual-motor skills in preschool children. Am J Occup Ther. 2003; 57(5), 542549. DOI: 10.5014/ajot.57.5.542.CrossRefGoogle ScholarPubMed
Section on Ophthalmology American Academy of Pediatrics American Academy of Ophthalmology American Association for Pediatric Ophthalmology and Strabismus. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2006; 118(3), 13241576. DOI: 10.1542/peds.2005-2749.Google Scholar
International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005; 123(7), 991999. DOI: 10.1001/archopht.123.7.991.CrossRefGoogle Scholar
Cieza, A, Keel, S, Kocur, I, Mccoy, M, Mariotti, SP. World Report On Vision, 2019. World Health Organization, Geneva.Google Scholar
Quinn, GE, Dobson, V, Davitt, BV, et al. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings at 4 to 6 years of age. J Am Assoc Pediatr Ophthalmol Strabismus. 2013; 17(2), 124128. DOI: 10.1016/j.jaapos.2012.10.025.CrossRefGoogle ScholarPubMed
Geloneck, MM, Chuang, AZ, Clark, WL, et al. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014; 132(11), 13271333. DOI: 10.1001/jamaophthalmol.2014.2772.CrossRefGoogle ScholarPubMed
Rhonda Folio, M, Rebecca, RF. Peabody Developmental Motor Scales-2 (PDMS-2) Examiner Manual Second Edition, 2000. Austin, Texas: Published by Pro-ed.Google Scholar
Wang, HH, Liao, HF, Hsieh, CL. Reliability, sensitivity to change, and responsiveness of the peabody developmental motor scales-second edition for children with cerebral palsy. Phys Ther. 2006; 86(10), 13511359. DOI: 10.2522/ptj.20050259.CrossRefGoogle ScholarPubMed
Beligere, N, Perumalswamy, V, Tandon, M, et al. Retinopathy of prematurity and neurodevelopmental disabilities in premature infants. Semin Fetal Neonatal Med. 2015; 20(5), 346353. DOI: 10.1016/j.siny.2015.06.004.CrossRefGoogle ScholarPubMed
VanderVeen, DK, Melia, M, Yang, MB, Hutchinson, AK, Wilson, LB, Lambert, SR. Anti-vascular endothelial growth factor therapy for primary treatment of Type 1 retinopathy of prematurity: a report by the American academy of ophthalmology. Ophthalmology. 2017; 124(5), 619633. DOI: 10.1016/j.ophtha.2016.12.025.CrossRefGoogle ScholarPubMed
Kong, L, Bhatt, AR, Demny, AB, et al. Pharmacokinetics of bevacizumab and its effects on serum VEGF and IGF-1 in infants with retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2015; 56(2), 956961. DOI: 10.1167/iovs.14-15842.CrossRefGoogle ScholarPubMed
Rosenstein, JM, Krum, JM, Ruhrberg, C. VEGF in the nervous system. Organogenesis. 2010; 6(2), 107114. DOI: 10.4161/org.6.2.11687.CrossRefGoogle ScholarPubMed
Mani, N, Khaibullina, A, Krum, JM, Rosenstein, JM. Vascular endothelial growth factor enhances migration of astroglial cells in subventricular zone neurosphere cultures. J Neurosci Res. 2010; 88(2), 248257. DOI: 10.1002/jnr.22197.CrossRefGoogle ScholarPubMed
Martínez-Castellanos, MA, Schwartz, S, Hernández-Rojas, ML, et al. Long-term effect of antiangiogenic therapy for retinopathy of prematurity up to 5 years of follow-up. Retina. 2013; 33(2), 329338. DOI: 10.1097/IAE.0b013e318275394a.CrossRefGoogle ScholarPubMed
Araz-Ersan, B, Kir, N, Tuncer, S, et al. Preliminary anatomical and neurodevelopmental outcomes of intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity. Curr Eye Res. 2015; 40(6), 585591. DOI: 10.3109/02713683.2014.941070.CrossRefGoogle ScholarPubMed
Fan, YY, Huang, YS, Huang, CY, et al. Neurodevelopmental outcomes after intravitreal bevacizumab therapy for retinopathy of prematurity: a prospective case-control study. Ophthalmology. 2019; 126(11), 15671577. DOI: 10.1016/j.ophtha.2019.03.048.CrossRefGoogle ScholarPubMed
Chiang, MC, Chen, YT, Kang, EY, et al. Neurodevelopmental outcomes for retinopathy of prematurity: a Taiwan premature infant follow-up network database study. Am J Ophthalmol. 2023; 247, 170180. DOI: 10.1016/j.ajo.2022.10.020.CrossRefGoogle ScholarPubMed
Celik, P, Ayranci Sucakli, I, Kara, C, et al. Bevacizumab and neurodevelopmental outcomes of preterm infants with retinopathy of prematurity: should we still worry? J Matern Fetal Neonatal Med. 2022; 35(3), 415422. DOI: 10.1080/14767058.2021.1888913.CrossRefGoogle ScholarPubMed
Geldof, CJ, van Wassenaer, AG, de Kieviet, JF, Kok, JH, Oosterlaan, J. Visual perception and visual-motor integration in very preterm and/or very low birth weight children: a meta-analysis. Res Dev Disabil. 2012; 33(2), 726736. DOI: 10.1016/j.ridd.2011.08.025.CrossRefGoogle ScholarPubMed
Molloy, CS, Anderson, PJ, Anderson, VA, Doyle, LW. The long-term outcome of extremely preterm (<28 weeks' gestational age) infants with and without severe retinopathy of prematurity. J Neuropsychol. 2016; 10(2), 276294. DOI: 10.1111/jnp.12069.CrossRefGoogle ScholarPubMed
Fielder, A, Blencowe, H, O'Connor, A, Gilbert, C. Impact of retinopathy of prematurity on ocular structures and visual functions. Arch Dis Child Fetal Neonatal Ed. 2015; 100(2), F179F184. DOI: 10.1136/archdischild-2014-306207.CrossRefGoogle ScholarPubMed
Anilkumar, SE, Anandi, V, Shah, PK, Ganesh, S, Narendran, K. Refractive, sensory, and biometric outcome among retinopathy of prematurity children with a history of laser therapy: a retrospective review from a tertiary care center in South India. Indian J Ophthalmol. 2019; 67(6), 871876. DOI: 10.4103/ijo.IJO_2023_18.CrossRefGoogle ScholarPubMed
Ng, EY, Connolly, BP, McNamara, JA, Regillo, CD, Vander, JF, Tasman, W. A comparison of laser photocoagulation with cryotherapy for threshold retinopathy of prematurity at 10 years. Ophthalmology. 2002; 109(5), 928935. DOI: 10.1016/s0161-6420(01)01017-x.CrossRefGoogle ScholarPubMed
Saint-Geniez, M, Maharaj, AS, Walshe, TE, et al. Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS One. 2008; 3(11), e3554. DOI: 10.1371/journal.pone.0003554.CrossRefGoogle ScholarPubMed
Ford, KM, Saint-Geniez, M, Walshe, T, Zahr, A, D'Amore, PA. Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011; 52(13), 94789487. DOI: 10.1167/iovs.11-8353.CrossRefGoogle ScholarPubMed
Pinello, L, Manea, S, Visonà Dalla Pozza, L, Mazzarolo, M, Facchin, P. Visual, motor, and psychomotor development in small-for-gestational-age preterm infants. J AAPOS. 2013; 17(4), 352356. DOI: 10.1016/j.jaapos.2013.03.026.CrossRefGoogle ScholarPubMed
van Veen, S, van Wassenaer-Leemhuis, AG, van Kaam, AH, Oosterlaan, J, Aarnoudse-Moens, CSH. Visual perceptive skills account for very preterm children’s mathematical difficulties in preschool. Early Hum Dev. 2019; 129, 1115. DOI: 10.1016/j.earlhumdev.2018.12.018.CrossRefGoogle ScholarPubMed
Kaya, M, Berk, AT, Yaman, A. Long-term evaluation of refractive changes in eyes of preterm children: a 6-year follow-up study. Int Ophthalmol. 2018; 38(4), 16811688. DOI: 10.1007/s10792-017-0642-z.CrossRefGoogle ScholarPubMed
Mintz-Hittner, HA, Geloneck, MM. Review of effects of anti-VEGF treatment on refractive error. Eye Brain. 2016; 8, 135140. DOI: 10.2147/EB.S99306.Google ScholarPubMed
Goyen, TA, Todd, DA, Veddovi, M, Wright, AL, Flaherty, M, Kennedy, J. Eye-hand co-ordination skills in very preterm infants < 29 weeks gestation at 3 years: effects of preterm birth and retinopathy of prematurity. Early Hum Dev. 2006; 82(11), 739745. DOI: 10.1016/j.earlhumdev.2006.02.011.CrossRefGoogle ScholarPubMed
Chen, TA, Schachar, IH, Moshfeghi, DM. Outcomes of intravitreal bevacizumab and diode laser photocoagulation for treatment-warranted retinopathy of prematurity. Ophthalmic Surg Lasers Imaging Retina. 2018; 49(2), 126131. DOI: 10.3928/23258160-20180129-07.CrossRefGoogle ScholarPubMed
Stoll, BJ, Hansen, NI, Bell, EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010; 126(3), 443456. DOI: 10.1542/peds.2009-2959.CrossRefGoogle ScholarPubMed
Sutton, GP, Barchard, KA, Bello, DT, et al. Beery-Buktenica developmental test of visual-motor integration performance in children with traumatic brain injury and attention-deficit/hyperactivity disorder. Psychol Assess. 2011; 23(3), 805809. DOI: 10.1037/a0023370.CrossRefGoogle ScholarPubMed