Skip to main content
×
Home
    • Aa
    • Aa

Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

  • Anthony Arendt (a1), Scott Luthcke (a2), Alex Gardner (a3) (a4), Shad O’Neel (a5), David Hill (a6), Geir Moholdt (a7) and Waleed Abdalati (a8)...
Abstract
Abstract

We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of −65 ± 11 Gt a−1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of −61 ± 11 Gt a−1 from GRACE, which compares well with −65 ± 12 Gt a−1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers
      Available formats
      ×
Copyright
References
Hide All
ArendtAA, EchelmeyerKA, HarrisonWD, LingleCS and ValentineVB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386 (doi: 10.1126/science.1072497)
ArendtA and 7 others (2006) Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. J. Geophys. Res., 111(F3), F03019 (doi: 10.1029/2005JF000436)
ArendtAA, LuthckeSB, LarsenCF, AbdalatiW, KrabillWB and BeedleMJ (2008) Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. J. Glaciol., 54(188), 778787 (doi: 10.3189/002214308787780067)
ArendtAA, LuthckeSB and HockR (2009) Glacier changes in Alaska: can mass-balance models explain GRACE mascon trends? Ann. Glaciol., 50(50), 148154 (doi: 10.3189/172756409787769753)
ArendtA and 77 others (2012) Randolph Glacier Inventory (RGI), Vers. 1.0: a dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder, CO. Digital media: http://www.glims.org/RGI/randolph.html
BaderH (1954) Sorge’s Law of densification of snow on high polar glaciers. J. Glaciol., 2(15), 319323
BerthierE, SchieferE, ClarkeGKC, MenounosB and RémyF (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3(2), 9295 (doi: 10.1038/ngeo737)
ChenJL, WilsonCR and TapleyBD (2006a) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795), 19581960 (doi: 10.1126/science.1129007)
ChenJL, TapleyBD and WilsonCR (2006b) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet. Sci. Lett., 248(1–2), 368378 (doi: 10.1016/j.epsl.2006.05.039)
ConwayH, GadesA and RaymondCF (1996) Albedo of dirty snow during conditions of melt. Water Resour. Res., 32(6),17131718 (doi: 10.1029/96WR00712)
CoxLH and MarchRS (2004) Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. J. Glaciol., 50(170), 363370 (doi: 10.3189/172756504781829855)
DalyC, NeilsonRP and PhillipsDL (1994) A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33(2), 140158 (doi: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2)
DrijfhoutSS, HeinzeC, LatifM and Maier-ReimerE (1996) Mean circulation and internal variability in an ocean primitive equation model. J. Phys. Oceanogr., 26(4), 559580 (doi: 10.1175/1520-0485(1996)026<0559:MCAIVI>2.0.CO;2)
FuY and FreymuellerJT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res., 117(B3), B03407 (doi: 10.1029/2011JB008925)
GardnerA, MoholdtG, ArendtA and WoutersB (2012) Accelerated contributions of Canada’s Baffin and Bylot Island glaciers to sea level rise over the past half century. Cryosphere, 6(5), 11031125 (doi: 10.5194/tc-6-1103-2012)
GardnerAS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
HallDK and RiggsGA (2007) Accuracy assessment of the MODIS snow-cover products. Hydrol. Process., 21(12), 15341547 (doi: 10.1002/hyp.6715)
HallDK, RiggsGA and SalomonsonVV (2011) MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG V005. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/docs/daac/modisv5/mod10cm_modis_terra_snow_monthly_global_0.05deg_cmg.gd.html
HarrisonWD, CoxLH, HockR, MarchRS and PettitEC (2009) Implications for the dynamic health of a glacier from comparison of conventional and reference-surface balances. Ann. Glaciol., 50(50), 2530 (doi: 10.3189/172756409787769654)
HillEM, DavisJL, TamisieaME, PonteRM and VinogradovaNT (2011) Using a spatially realistic load model to assess impacts of Alaskan glacier ice loss on sea level. J. Geophys. Res., 116(B10), B10407 (doi: 10.1029/2011JB008339)
JacobT, WahrJ, PfefferWT and SwensonS (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518 (doi: 10.1038/nature10847)
JohnsonA, LarsenCF, MurphyN, ArendtA and ZirnheldSL (2013) Mass balance in the Glacier Bay area of Alaska and British Columbia 1995–2011 using airborne laser altimetry. J. Glaciol., 59(216), 632648
LarsenCF, MotykaRJ, FreymuellerJT, EchelmeyerKA and IvinsER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreats. Earth Planet. Sci. Lett., 237(3–4), 548560 (doi: 10.1016/j.epsl.2005.06.032)
LuthckeSB and 8 others (2006a) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 12861289 (doi: 10.1126/science.1130776)
LuthckeSB, RowlandsDD, LemoineFG, KloskoSM, ChinnD and McCarthyJJ (2006b) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys. Res. Lett., 33(2), L02402 (doi: 10.1029/2005GL024846)
LuthckeSB, ArendtAA, RowlandsDD, McCarthyJJ and LarsenCF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54(188), 767777 (doi: 10.3189/002214308787779933)
LuthckeSB, SabakaTJ, LoomisBD, ArendtA, McCarthyJJ and CampJ (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59(216), 613631 (doi: 10.3189/2013JoG12J147)
MeierMF (1984) Contribution of small glaciers to global sea level. Science, 226(4681), 14181421 (doi: 10.1126/science.226.4681.1418)
MeierMF and DyurgerovMB (2002) How Alaska affects the world. Science, 297(5580), 350351 (doi: 10.1126/science.1073591)
MoholdtG, NuthC, HagenJO and KohlerJ (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi: 10.1016/ j.rse.2010.06.008)
MoholdtG, WoutersB and GardnerAS (2012) Recent mass changes of glaciers in the Russian High Arctic. Geophys. Res. Lett., 39(10), L10502 (doi: 10.1029/2012GL051466)
NealEG, HoodE and SmikrudK (2010) Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett., 37(6), L06404 (doi: 10.1029/2010GL042385)
PainterTH, RittgerK, McKenzieC, SlaughterP, DavisRE and DozierJ (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113(4), 868879 (doi: 10.1016/j.rse.2009.01.001)
PaulsonA, ZhongS and WahrJ (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2), 497508 (doi: 10.1111/j.1365-246X.2007.03556.x)
PeltierWR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149 (doi: 10.1146/annurev.earth.32.082503.144359)
PritchardHD, LuthckeSB and FlemingAH (2010) Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry. J. Glaciol., 56(200), 11511161 (doi: 10.3189/002214311796406194)
RasmussenLA and ConwayH (2004) Climate and glacier variability in western North America. J. Climate, 17(9), 18041815 (doi: 10.1175/1520-0442(2004)017<1804:CAGVIW>2.0.CO;2)
RasmussenLA, ConwayHB, KrimmelRM and HockR (2011) Surface mass balance, thinning, and iceberg production, Columbia Glacier, Alaska, 1948–2007. J. Glaciol., 57(203), 431440 (doi: 10.3189/002214311796905532)
RodellM and HouserPR (2004) Updating a land surface model with MODIS-derived snow cover. J. Hydromet., 5(6),10641075 (doi: 10.1175/JHM-395.1)
RodellM and 13 others (2004) The global land data assimilation system. Bull. Am. Meteorol. Soc., 85(3), 381394 (doi: 10.1175/BAMS-85-3-381)
RowlandsDD and 7 others (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32(4), L04310 (doi: 10.1029/2004GL021908)
RowlandsDD and 7 others (2010) Global mass flux solutions from GRACE: a comparison of parameter estimation strategies: mass concentrations versus Stokes coefficients. J. Geophys. Res., 115(B1), B01403 (doi: 10.1029/2009JB006546)
SabakaTJ, RowlandsDD, LuthckeSB and BoyJ-P (2010) Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J. Geophys. Res., 115(B11), B11403 (doi: 10.1029/2010JB007533)
SasgenI, KlemannV and MartinecZ (2012a) Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland. J. Geodyn., 59–60, 4963 (doi: 10.1016/j.jog.2012.03.004)
SasgenI and 8 others (2012b) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303 (doi: 10.1016/j.epsl.2012.03.033)
SchaafCB, WangZ and StrahlerAH (2011) Commentary on Wang and Zender – MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ., 115(5), 12961300 (doi: 10.1016/j.rse.2011.01.002)
SmithBE, FrickerHA, JoughinIR and TulaczykS (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573595 (doi: 10.3189/002214309789470879)
StroeveJ, BoxJE, GaoF, LiangS, NolinA and SchaafC (2005) Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens. Environ., 94(1), 4660 (doi: 10.1016/j.rse.2004.09.001)
SwensonS, ChambersD and WahrJ (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113(B8), B08410 (doi: 10.1029/2007JB005338)
TamisieaME, LeulietteEW, DavisJL and MitrovicaJX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys. Res. Lett., 32(20), L20501 (doi: 10.1029/2005GL023961)
ThomasM (2002) Ocean induced variations of Earth’s rotation – results from a simultaneous model of global circulation and tides. (PhD thesis, University of Hamburg)
Van BeusekomAE, O’NeelSR, MarchRS, SassLC and CoxLH (2010) Re-analysis of Alaskan benchmark glacier mass-balance data using the index method. USGS Sci. Invest. Rep. 2010-5247
WallaceKL, SchaeferJR and CoombsML (2013) Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska – highlighting the significance of particle aggregation. J. Volcan. Geotherm. Res., 259, 145169 (doi: 10.1016/j.jvolgeores.2012.09.015)
WolffJO, Maier-ReimerE and LegutkeS (1997) The Hamburg Ocean Primitive Equation Model HOPE. (DKRZ Tech. Rep.) Deutsches Klimarechenzentrum, Hamburg
WuXM and 8 others (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geosci., 3(9), 642646 (doi: 10.1038/ngeo938)
ZwallyHJ and 15 others (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean and land. J. Geodyn., 34(3–4), 405445 (doi: 10.1016/S0264-3707(02)00042-X)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 15 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 21st October 2017. This data will be updated every 24 hours.