Skip to main content Accessibility help

Comparison of traditional and optical grain-size field measurements with SNOWPACK simulations in a taiga snowpack

  • L. Leppänen (a1), A. Kontu (a1), J. Vehviläinen (a1), J. Lemmetyinen (a1) and J. Pulliainen (a1)...


Knowledge of snow microstructure is relevant for modelling the physical properties of snow cover and for simulating the propagation of electromagnetic waves in remote-sensing applications. Characterization of the microstructure in field conditions is, however, a challenging task due to the complex, sintered and variable nature of natural snow cover. A traditional measure applied as a proxy of snow microstructure, which can also be determined in field conditions, is the visually estimated snow grain size. Developing techniques also allow measurement, for example, of the specific surface area (SSA) of snow, from which the optical-equivalent grain size can be derived. The physical snow model SNOWPACK simulates evolution of snow parameters from meteorological forcing data. In this study we compare an extensive experimental dataset of measurements of traditional grain size and SSA-derived optical grain size with SNOWPACK simulations of grain-size parameters. On average, a scaling factor of 1.2 is required to match traditional grain-size observations with the corresponding SNOWPACK simulation; a scaling factor of 2.1 was required for the optical equivalent grain size. Standard deviations of scaling factors for the winters of 2011/12 and 2012/13 were 0.36 and 0.42, respectively. The largest scaling factor was needed in early winter and under melting conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of traditional and optical grain-size field measurements with SNOWPACK simulations in a taiga snowpack
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of traditional and optical grain-size field measurements with SNOWPACK simulations in a taiga snowpack
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of traditional and optical grain-size field measurements with SNOWPACK simulations in a taiga snowpack
      Available formats


Corresponding author

Correspondence: L. Leppänen <>


Hide All
Adams, EE and Brown, RL (1982) A model for crystal development in dry snow. Geophys. Res. Lett., 9(11), 12871289 (doi: 10.1029/GL009i011p01287)
Arnaud, L and 7 others (2011) Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation. J. Glaciol., 57(201), 1729 (doi: 10.3189/002214311795306664)
Baunach, T, Fierz, C, Satyawali, PK and Schneebeli, M (2001) A model for kinetic grain growth. Ann. Glaciol., 32, 16 (doi: 10.3189/172756401781819427)
Brown, RD (2000) Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13(7), 23392355 (doi: 10.1016/S0165-232X(01)00032-5)
Brown, RL, Edens, MQ and Barber, M (1999) Mixture theory of mass transfer based upon microstructure. Defence Sci. J., 49(5), 393409
Brown, RL, Satyawali, PK, Lehning, M and Bartelt, P (2001) Modeling the changes in microstructure during metamorphism. Cold Reg. Sci. Technol., 33(2–3), 91101 (doi: 10.1016/S0165-232X(01)00032-5)
Brun, E, David, P, Sudul, M and Brunot, G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38(128), 1322
Chang, ATC, Foster, JL, Hall, DK, Rango, A and Hartline, BK (1982) Snow water equivalent estimation by microwave radiometry. Cold Reg. Sci. Technol., 5(3), 259267 (doi: 10.1016/0165-232X(82)90019-2)
Chen, S and Baker, I (2010) Evolution of individual snowflakes during metamorphism. J. Geophys. Res., 115(D21), D21114 (doi: 10.1029/2010JD014132)
Colbeck, SC (1982) An overview of seasonal snow metamorphism. Rev. Geophys. Space Phys., 20(1), 4561 (doi: 10.1029/RG020i001p00045)
Colbeck, SC (1991) The layered character of snow covers. Rev. Geophys., 29(1), 8196 (doi: 10.1029/90RG02351)
Colbeck, SC and 7 others (1990) The international classification for seasonal snow on the ground. International Commission on Snow and Ice, International Association of Scientific Hydrology, Wallingford
De Vries, DA (1963) Thermal properties of soils. In Van Wijk, WR ed. Physics of plant environment. North-Holland Publishing Co., Amsterdam
Debye, P, Anderson, HR and Brumberger, H (1957) Scattering by an inhomogeneous solid II. The correlation function and its application. J. Appl. Phys., 28(6), 679683 (doi: 10.1063/1.1722830)
Domine, F, Cabanes, A, Taillandier, AS and Legagneux, L (2001) Specific surface area of snow samples determined by CH4 adsorption at 77 K and estimated by optical microscopy and scanning electron microscopy. Environ. Sci. Technol., 35(4), 771780 (doi: 10.1021/es001168n)
Domine, F, Salvatori, R, Legagneux, L, Salzano, R, Fily, M and Casacchia, R (2006) Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol., 46(1), 6068 (doi: 10.1016/j.coldregions.2006.06.002)
Domine, F and 7 others (2008) Snow physics as relevant to snow photochemistry. Atmos. Chem. Phys., 8(2), 171208 (doi: 10.5194/acp-8-171-2008)
Dozier, J and Painter, TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci., 32, 465494 (doi: 10.1146/
Dozier, J, Davis, RE and Perla, R (1987) On the objective analysis of snow microstructure. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 4959
Fierz, C and 8 others (2009) The international classification for seasonal snow on the ground. (IHP Technical Documents in Hydrology 83) UNESCO–International Hydrological Programme, Paris
Flanner, MG and Zender, CS (2006) Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111(D12), D12208 (doi: 10.1029/2005JD006834)
Flin, F and 9 others (2005) Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from x-ray tomography. IEEE Trans. Image Process., 14(5), 585596 (doi: 10.1109/TIP.2005.846021)
Gallet, J-C, Domine, F, Zender, CS and Picard, G (2009) Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere, 3(2), 167182 (doi: 10.5194/tc-3-167-2009)
Giddings, JC and LaChapelle, E (1961) Diffusion theory applied to radiant energy distribution and albedo of snow. J. Geophys. Res., 66(1), 181189 (doi: 10.1029/JZ066i001p00181)
Grenfell, TC and Warren, SG (1999) Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104(D24), 31 69731 709 (doi: 10.1029/2005JD005811)
Hall, DK, Riggs, GA and Salomonson, VV (1995) Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ., 54(2), 127140 (doi: 10.1016/0034-4257(95)00137-P)
Hall, DK, Riggs, GA, Salomonson, VV, DiGirolamo, N and Bayr, KJ (2002) MODIS snow-cover products. Remote Sens. Environ., 83(1–2), 181194 (doi: 10.1016/S0034-4257(02)00095-0)
Hallikainen, MT, Ulaby, FT and Van Deventer, TE (1987) Extinction behavior of dry snow in the 18- to 90-GHz range. IEEE Trans. Geosci. Remote Sens., 25(6), 737745 (doi: 10.1109/TGRS.1987.289743)
Hirashima, H, Nishimura, K, Yamaguchi, S, Sato, A and Lehning, M (2008) Avalanche forecasting in a heavy snowfall area using the snowpack model. Cold Reg. Sci. Technol., 51(2–3), 191203 (doi: 10.1016/j.coldregions.2007.05.013)
Huang, C, Margulis, SA, Durand, MT and Musselman, KN (2012) Assessment of snow grain-size model and stratigraphy representation impacts on snow radiance assimilation: forward modeling evaluation. IEEE Trans. Geosci. Remote Sens., 50(11), 45514564 (doi: 10.1109/TGRS.2012.2192480)
Jin, Y-Q (1993) Electromagnetic scattering modelling for quantitative remote sensing. World Scientific, Singapore
Kokhanovsky, AA and Zege, EP (2004) Scattering optics of snow. Appl. Opt., 43(7), 15891602 (doi: 10.1364/AO.43.001589)
Langlois, A and 8 others (2010) On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Reg. Sci. Technol., 61(1), 3442 (doi: 10.1016/j.coldregions.2010.01.004)
Langlois, A, Royer, A, Derksen, C, Montpetit, B, Dupont, F and Goïta, K (2012) Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals. Water Resour. Res., 48(12), W12524 (doi: 10.1029/2012WR012133)
Legagneux, L, Cabanes, A and Domine, F (2002) Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K. J. Geophys. Res., 107(D17), 4335 (doi: 10.1029/2001JD001016)
Lehning, M, Bartelt, P, Brown, B, Fierz, C and Satyawali, P (2002a) A physical SNOWPACK model for the Swiss avalanche warning. Part II: snow microstructure. Cold Reg. Sci. Technol., 35(3), 147167 (doi: 10.1016/S0165-232X(02)00072-1)
Lehning, M, Bartelt, P, Brown, B and Fierz, C (2002b) A physical SNOWPACK model for the Swiss avalanche warning. Part III: meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol., 35(3), 169184 (doi: 10.1016/S0165-232X(02)00072-1)
Martinec, J and Rango, A (1986) Parameter values for snowmelt runoff modelling. J. Hydrol., 84(3–4), 197219 (doi: 10.1016/0022-1694(86)90123-X)
Matzl, M and Schneebeli, M (2006) Measuring specific surface area of snow by near-infrared photography. J. Glaciol., 52(179), 558564 (doi: 10.3189/172756506781828412)
Matzl, M and Schneebeli, M (2010) Stereological measurement of the specific surface area of seasonal snow types: comparison to other methods, and implications for mm-scale vertical profiling. Cold Reg. Sci. Technol., 64(1), 18 (doi: 10.1016/j.coldregions.2010.06.006)
Mätzler, C (2002) Relation between grain-size and correlation length of snow. J. Glaciol., 48(162), 461466 (doi: 10.3189/172756502781831287)
Mätzler, C and Wiesmann, A (1999) Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sens. Environ., 70(3), 317325 (doi: 10.1016/S0034-4257(99)00047-4)
Maurer, EP, Rhoads, JD, Dubayah, RO and Lettenmaier, D (2003) Evaluation of the snow-covered area data product from MODIS. Hydrol. Process., 17(1), 5971 (doi: 10.1002/hyp.1193)
Mognard, NM (2003) Global snow-cover evolution from twenty years of satellite passive microwave data. In Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS 2003), 21–25 July 2003, Toulouse, France, Vol. 4. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 28382840
Montpetit, B and 8 others (2012) New shortwave infrared albedo measurements for snow specific surface area retrieval. J. Glaciol., 58(211), 941952 (doi: 10.3189/2012JoG11J248)
Painter, TH, Molotch, NP, Cassidy, M, Flanner, M and Steffen, K (2007) Contact spectroscopy for determination of stratigraphy of snow optical grain size. J. Glaciol., 53(180), 121127 (doi: 10.3189/172756507781833947)
Picard, G, Arnaud, L, Domine, F and Fily, M (2009) Determining snow specific surface area from near-infrared reflectance measurements: numerical study of the influence of grain shape. Cold Reg. Sci. Technol., 56(1), 1017 (doi: 10.1016/j.coldregions.2008.10.001)
Pielmeier, C and Schneebeli, M (2003) Stratigraphy and changes in hardness of snow measured by hand, rammsonde and snow micro penetrometer; a comparison with planar sections. Cold Reg. Sci. Technol., 37(3), 393405 (doi: 10.1016/S0165-232X(03)00079-X)
Pirinen, P, Simola, H, Aalto, J, Kaukoranta, J-P, Karlsson, P and Ruuhela, R (2012) Climatological statistics of Finland 1981–2012. (Report No. 2012-1) Finnish Meteorological Institute, Helsinki
Pulliainen, J and Hallikainen, M (2001) Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ., 75(1), 7685 (doi: 10.1016/S0034-4257(00)00157-7)
Pulliainen, JT, Grandell, J and Hallikainen, MT (1999) HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens., 37(3), 13781390 (doi: 10.1109/36.763302)
Rasmus, S, Gronholm, S, Lehning, T, Rasmus, M and Kulmala, M (2007) Validation of the SNOWPACK model in five different snow zones in Finland. Boreal Environ. Res., 12(4), 467488
Roy, V, Goïta, K, Royer, R, Walker, AE and Goodison, BE (2004) Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model. IEEE Trans. Geosci. Remote Sens., 42(9), 18501859 (doi: 10.1109/TGRS.2004.832245)
Schweizer, J, Bellaire, S, Fierz, C, Lehning, M and Pielmeier, C (2006) Evaluating and improving the stability predictions of the snow cover model SNOWPACK. Cold Reg. Sci. Technol., 46(1), 5259 (doi: 10.1016/j.coldregions.2006.05.007)
Shaffrey, LC and 25 others (2009) U.K. HiGEM: the new UK high-resolution global environment model – model description and basic evaluation. J. Climate, 22(8), 18611896 (doi: 10.1175/2008JCLI2508.1)
Stogryn, A (1986) A study of the microwave brightness temperature of snow from the point of view of the strong fluctuation theory. IEEE Trans. Geosci. Remote Sens., 24(2), 220231 (doi: 10.1109/TGRS.1986.289641)
Sturm, M, Morris, K and Massom, R (1998) The winter snow cover of the West Antarctic pack ice: its spatial and temporal variability. In Jeffries, MO ed. Antarctic sea ice: physical processes, interactions and variability. (Antarctic Research Series 74) American Geophysical Union, Washington, DC, 118
Sun, S, Jin, J and Xue, Y (1999) A simple snow–atmosphere–soil transfer model. J. Geophys. Res., 104(D16), 19 58719 597 (doi: 10.1029/1999JD900305)
Tedesco, M and Kim, EJ (2006) Intercomparison of electromagnetic models for passive microwave remote sensing of snow. IEEE Trans. Geosci. Remote Sens., 44(10), 26542666 (doi: 10.1109/TGRS.2006.873182)
Tsang, L and Kong, JA (1981) Scattering of electromagnetic waves from random media with strong permittivity fluctuations. Radio Sci., 16, 303320 (doi: 10.1029/RS016i003p00303)
Tsang, L, Kong, JA and Shin, RT (1985) Theory of microwave remote sensing. Wiley, New York
Vionnet, V and 7 others (2012) The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model Dev., 5(3), 773791 (doi: 10.5194/gmd-5-773-2012)
Wiesmann, A and Mätzler, C (1999) Microwave emission model of layered snowpacks. Remote Sens. Environ., 70(3), 307316 (doi: 10.1016/S0034-4257(99)00046-2)
Wiesmann, A, Mätzler, C and Weise, T (1998) Radiometric and structural measurements of snow samples. Radio Sci., 33(2), 273289 (doi: 10.1029/97RS02746)
Wiscombe, WJ and Warren, SG (1980) A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci., 37(12), 27122733 (doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed