Skip to main content Accessibility help
×
Home

Constraining the geothermal heat flux in Greenland at regions of radar-detected basal water

  • Soroush Rezvanbehbahani (a1) (a2), Leigh A. Stearns (a1) (a2), C. J. van der Veen (a3), Gordon K. A. Oswald (a4) and Ralf Greve (a5)...

Abstract

The spatial distribution of basal water critically impacts the evolution of ice sheets. Current estimates of basal water distribution beneath the Greenland Ice Sheet (GrIS) contain large uncertainties due to poorly constrained boundary conditions, primarily from geothermal heat flux (GHF). The existing GHF models often contradict each other and implementing them in numerical ice-sheet models cannot reproduce the measured temperatures at ice core locations. Here we utilize two datasets of radar-detected basal water in Greenland to constrain the GHF at regions with a thawed bed. Using the three-dimensional ice-sheet model SICOPOLIS, we iteratively adjust the GHF to find the minimum GHF required to reach the bed to the pressure melting point, GHFpmp, at locations of radar-detected basal water. We identify parts of the central-east, south and northwest Greenland with significantly high GHFpmp. Conversely, we find that the majority of low-elevation regions of west Greenland and parts of northeast have very low GHFpmp. We compare the estimated constraints with the available GHF models for Greenland and show that GHF models often do not honor the estimated constraints. Our results highlight the need for community effort to reconcile the discrepancies between radar data, GHF models, and ice core information.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Constraining the geothermal heat flux in Greenland at regions of radar-detected basal water
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Constraining the geothermal heat flux in Greenland at regions of radar-detected basal water
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Constraining the geothermal heat flux in Greenland at regions of radar-detected basal water
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Soroush Rezvanbehbahani, E-mail: soroushr@ku.edu

References

Hide All
Alley, RB and 9 others (2019) Possible role for tectonics in the evolving stability of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface 124(1), 97115. doi: 10.1029/2018JF004714
Andersen, KK and 9 others (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005), 147. doi: 10.1038/nature02805
Artemieva, IM (2019) Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method. Earth-Science Reviews 188, 469481. ISSN 0012-8252. doi: 10.1016/j.earscirev.2018.10.015
Aschwanden, A, Bueler, E, Khroulev, C and Blatter, H (2012) An enthalpy formulation for glaciers and ice sheets. Journal of Glaciology 58(209), 441457. doi: 10.3189/2012JoG11J088
Bales, RC and 8 others (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. Journal of Geophysical Research: Atmospheres 114(D6), D06116. doi: 10.1029/2008JD011208
Bamber, JL and 10 others (2013) A new bed elevation dataset for Greenland. The Cryosphere 7(2), 499510. doi: 10.5194/tc-7-499-2013
Blatter, H and Greve, R (2015) Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science 9(2), 196207. doi: 10.1016/j.polar.2015.04.001
Bowling, J, Livingstone, SJ, Sole, AJ and Chu, W (2019) Distribution and dynamics of greenland subglacial lakes. Nature Communications 10, 2810. doi: 10.1038/s41467-019-10821-w
Calov, R and 8 others (2018) Simulation of the future sea level contribution of Greenland with a new glacial system model. The Cryosphere 12, 30973121. doi: 10.5194/tc-12-3097-2018
Calov, R and Greve, R (2005) A semi-analytical solution for the positive degree-day model with stochastic temperature variations. Journal of Glaciology 51(172), 173175. doi: 10.3189/172756505781829601
Christianson, K and 7 others (2014) Dilatant till facilitates ice-stream flow in northeast Greenland. Earth and Planetary Science Letters 401, 5769. doi: 10.1016/j.epsl.2014.05.060
Chu, W, Schroeder, DM, Seroussi, H, Creyts, TT and Bell, RE (2018) Complex basal thermal transition near the onset of Petermann Glacier, Greenland. Journal of Geophysical Research: Earth Surface 123(5), 985995. doi: 10.1029/2017JF004561
Csathó, B and 9 others (2014) Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proceedings of the National Academy of Sciences 111(52), 1847818483. doi: 10.1073/pnas.1411680112
Dahl-Jensen, D and 6 others (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282(5387), 268271. doi: 10.1126/science.282.5387.268
Dahl-Jensen, D, Gundestrup, N, Gogineni, SP and Miller, H (2003) Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Annals of Glaciology 37(1), 207212. doi: 10.3189/172756403781815492
Dansgaard, W, Johnsen, SJ, Møller, J and Langway, CC (1969) One thousand centuries of climatic record from Camp Century on the Greenland Ice Sheet. Science 166(3903), 377380. doi: 10.1126/science.166.3903.377
de Fleurian, B and 9 others (2018) SHMIP The subglacial hydrology model intercomparison Project. Journal of Glaciology 64(248), 897916. doi: 10.1017/jog.2018.78
Dow, CF and 6 others (2018) Dynamics of active subglacial lakes in Recovery Ice Stream. Journal of Geophysical Research: Earth Surface 123(4), 837850. doi: 10.1002/2017JF004409
Ettema, J and 5 others (2010) Climate of the Greenland Ice Sheet using a high-resolution climate model–Part 1: evaluation. The Cryosphere 4(4), 511527. doi: 10.5194/tc-4-511-2010
Fahnestock, M, Abdalati, W, Joughin, I, Brozena, J and Gogineni, P (2001) High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science 294(5550), 23382342. doi: 10.1126/science.1065370
Fausto, RS, Ahlstrøm, AP, Van As, D, Bøggild, CE and Johnsen, SJ (2009) A new present-day temperature parameterization for Greenland. Journal of Glaciology 55(189), 95105. doi: 10.3189/002214309788608985
Fettweis, X and 6 others (2013) Estimating the greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere 7(2), 469489. doi: 10.5194/tc-7-469-2013
Fox Maule, C, Purucker, ME and Olsen, N (2009) Inferring magnetic crustal thickness and geothermal heat flux from crustal magnetic field models. Danish Climate Centre Report, 09–09.
Glen, JW (1955) The creep of polycrystalline ice. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 228(1175), 519538. doi: 10.1098/rspa.1955.0066
Gogineni, S and 9 others (2001) Coherent radar ice thickness measurements over the Greenland Ice Sheet. Journal of Geophysical Research: Atmospheres 106(D24), 3376133772. doi: 10.1029/2001JD900183
Gooch, BT, Young, DA and Blankenship, DD (2016) Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica. Geochemistry, Geophysics, Geosystems 17(2), 395409. doi: 10.1002/2015GC006117
Goossens, T and 5 others (2016) A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach. The Cryosphere 10(2), 553567. doi: 10.5194/tc-10-553-2016
Greve, R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet: Response to steady-state and transient climate scenarios. Journal of Climate 10(5), 901918. doi: 10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2
Greve, R (2005) Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland Ice Sheet. Annals of Glaciology 42(1), 424432. doi: 10.3189/172756405781812510
Greve, R (2019) Geothermal heat flux distribution for the Greenland Ice Sheet, derived by combining a global representation and information from deep ice cores. Polar Data Journal 3, 2236. doi: 10.20575/00000006
Greve, R and Blatter, H (2009) Dynamics of Ice Sheets and Glaciers. Berlin, Germany: Springer Science & Business Media. doi: 10.1007/978-3-642-03415-2
Greve, R and Blatter, H (2016) Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS. Polar Science 10(1), 1123. doi: 10.1016/j.polar.2015.12.004
Greve, R and Hutter, K (1995) Polythermal three-dimensional modelling of the Greenland Ice Sheet with varied geothermal heat flux. Annals of Glaciology 21, 812. doi: 10.3189/S0260305500015524
Gundestrup, NS and Hansen, BL (1984) Bore-hole survey at Dye 3, south Greenland. Journal of Glaciology 30(106), 282288. doi: 10.3189/S0022143000006109
Hindmarsh, RCA and Le Meur, E (2001) Dynamical processes involved in the retreat of marine ice sheets. Journal of Glaciology 47(157), 271282. doi: 10.3189/172756501781832269
Hutter, K (1983) Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, volume 1. Dordrecht: Springer. doi: 10.1007/978-94-015-1167-4
Huybrechts, P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews 21(1–3), 203231. doi: 10.1016/S0277-3791(01)00082-8
Imbrie, J and 8 others (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine delta18 O record. In Berger, A, Imbrie, J, Hays, J, Kukla, G and Saltzman, B (eds), Milankovitch and Climate: Understanding the Response to Astronomical Forcing, volume 1 (NATOASI Series C: Mathematical and Physical Sciences, 126). Dordrecht: D. Reidel Pub. Co., pp. 269305. (doi: 10013/epic.48655).
Jordan, TM and 8 others (2018) A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. The Cryosphere 12(9), 28312854. doi: 10.5194/tc-12-2831-2018
Kobashi, T and 7 others (2011) High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophysical Research Letters 38(21), L21501. doi: 10.1029/2011GL049444
Larour, E, Morlighem, M, Seroussi, H, Schiermeier, J and Rignot, E (2012) Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface 117(F4), F04023. doi: 10.1029/2012JF002371
Le Meur, E and Huybrechts, P (1996) A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology 23, 309317. doi: 10.3189/S0260305500013586
Martos, YM and 5 others (2018) Geothermal heat flux reveals the Iceland hotspot track underneath greenland. Geophysical Research Letters 45(16), 82148222. doi: 10.1029/2018GL078289
Mordret, A (2018) Uncovering the Iceland hot spot track beneath greenland. Journal of Geophysical Research: Solid Earth 123(6), 49224941. doi: 10.1029/2017JB015104
Oswald, GKA and Gogineni, SP (2008) Recovery of subglacial water extent from Greenland radar survey data. Journal of Glaciology 54(184), 94106. doi: 10.3189/002214308784409107
Oswald, GKA and Gogineni, SP (2012) Mapping basal melt under the northern Greenland Ice Sheet. IEEE Transactions on Geoscience and Remote Sensing 50(2), 585592. doi: 10.1109/TGRS.2011.2162072
Oswald, GK, Rezvanbehbahani, S and Stearns, LA (2018) Radar evidence of ponded subglacial water in Greenland. Journal of Glaciology 64(247), 711729. doi: 10.1017/jog.2018.60
PhippsMorgan, J and Holtzman, BK (2005) Vug waves: a mechanism for coupled rock deformation and fluid migration. Geochemistry, Geophysics, Geosystems 6(8), Q08002. doi: 10.1029/2004GC000818
Pittard, ML, Galton-Fenzi, BK, Roberts, JL and Watson, CS (2016) Organization of ice flow by localized regions of elevated geothermal heat flux. Geophysical Research Letters 43(7), 33423350. doi: 10.1002/2016GL068436
Poinar, K and 5 others (2015) Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophysical Research Letters 42(6), 18001807. doi: 10.1002/2015GL063192
Poinar, K and 5 others (2017) Drainage of Southeast Greenland Firn Aquifer Water through crevasses to the bed. Frontiers in Earth Science 5, 5. ISSN 2296-6463. doi: 10.3389/feart.2017.00005
Pollack, HN, Hurter, SJ and Johnson, JR (1993) Heat flow from the Earth's interior: analysis of the global data set. Reviews of Geophysics 31(3), 267280. doi: 10.1029/93RG01249
Reeh, N (1991) Parameterization of melt rate and surface temperature in the Greenland ice sheet. Polarforschung 59(3), 113128. doi: 10013/epic.29636
Rezvanbehbahani, S, Stearns, LA, Kadivar, A, Walker, JD and van der Veen, CJ (2017) Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach. Geophysical Research Letters 44(24), 12,27112,279. doi: 10.1002/2017GL075661
Rezvanbehbahani, S, van der Veen, CJ and Stearns, LA (2019a) Fractal properties of greenland isolines. Mathematical Geosciences, 116. doi: https://doi.org/10.1007/s11004-019-09788-7
Rezvanbehbahani, S, van der Veen, CJ and Stearns, LA (2019b) An improved analytical solution for the temperature profile of ice sheets. Journal of Geophysical Research: Earth Surface 124(2), 271286. doi: 10.1029/2018JF004774
Rippin, DM (2013) Bed roughness beneath the Greenland ice sheet. Journal of Glaciology 59(216), 724732. doi: 10.3189/2013JoG12J212
Robin, GQ (1955) Ice movement and temperature distribution in glaciers and ice sheets. Journal of Glaciology 2(18), 523532. doi: 10.3189/002214355793702028
Robinson, A, Calov, R and Ganopolski, A (2010) An efficient regional energy-moisture balance model for simulation of the Greenland ice sheet response to climate change. The Cryosphere 4(2), 129144. doi: 10.5194/tc-4-129-2010
Rogozhina, I and 6 others (2012) Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: an assessment of existing heat flow models. Journal of Geophysical Research: Earth Surface 117(F2), F02025. doi: 10.1029/2011JF002098
Rogozhina, I and 9 others (2016) Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nature Geoscience 9(5), 366369. doi: 10.1038/ngeo2689
Rückamp, M, Greve, R and Humbert, A (2019) Comparative simulations of the evolution of the Greenland ice sheet under simplified Paris Agreement scenarios with the models SICOPOLIS and ISSM. Polar Science 21, 1425. doi: 10.1016/j.polar.2018.12.003
Schroeder, DM, Blankenship, DD and Young, DA (2013) Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proceedings of the National Academy of Sciences 110(30), 1222512228. doi: 10.1073/pnas.1302828110
Sclater, JG, Jaupart, C and Galson, D (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics 18(1), 269311. doi: 10.1029/RG018i001p00269
Seroussi, H and 5 others (2013) Dependence of century-scale projections of the Greenland Ice Sheet on its thermal regime. Journal of Glaciology 59(218), 10241034. doi: 10.3189/2013JoG13J054
Shapiro, NM and Ritzwoller, MH (2004) Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters 223(1), 213224. doi: 10.1016/j.epsl.2004.04.011
Sommers, A, Rajaram, H and Morlighem, M (2018) SHAKTI: subglacial hydrology and kinetic, transient interactions v1. 0. Geoscientific Model Development 11(7), 29552974. doi: 10.5194/gmd-11-2955-2018
Stevens, NT, Parizek, BR and Alley, RB (2016) Enhancement of volcanism and geothermal heat flux by ice-age cycling: a stress modeling study of Greenland. Journal of Geophysical Research: Earth Surface 121(8), 14561471. doi: 10.1002/2016JF003855
Van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science 326(5955), 984986. doi: 10.1126/science.1178176
Van der Veen, CJ, Leftwich, T, Von Frese, R, Csatho, BM and Li, J (2007) Subglacial topography and geothermal heat flux: potential interactions with drainage of the Greenland ice sheet. Geophysical Research Letters 34(12), L12501. doi: 10.1029/2007GL030046
Van Liefferinge, B and 6 others (2018) Promising oldest ice sites in East Antarctica based on thermodynamical modelling. The Cryosphere 12(8), 27732787. doi: 10.5194/tc-12-2773-2018
Van Liefferinge, B and Pattyn, F (2013) Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica. Climate of the Past 9(5), 23352345. doi: 10.5194/cp-9-2335-2013
Zhu, H and 5 others (2016) Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model. The Cryosphere 10(4), 14771494. doi: 10.5194/tc-10-1477-2016

Keywords

Type Description Title
PDF
Supplementary materials

Rezvanbehbahani et al. supplementary material
Rezvanbehbahani et al. supplementary material

 PDF (3.2 MB)
3.2 MB

Constraining the geothermal heat flux in Greenland at regions of radar-detected basal water

  • Soroush Rezvanbehbahani (a1) (a2), Leigh A. Stearns (a1) (a2), C. J. van der Veen (a3), Gordon K. A. Oswald (a4) and Ralf Greve (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed