Skip to main content Accessibility help
×
×
Home

Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvegen, Svalbard

  • John Woodward (a1), Tavi Murray (a2), Roger A. Clark (a3) and Graham W. Stuart (a3)

Abstract

Deformational structures at the surge-type glacier Kongsvegen, Svalbard, are displayed at the glacier surface and on a grounded cliff section at the terminus. A 300 m × 65 m grid of 200 MHz ground-penetrating radar (GPR) profiles has been collected adjacent to the cliff section in order to identify englacial structure.Two sub-horizontal reflectors have been imaged; the upper is interpreted as the glacier bed, and represents a transition between glacier ice and frozen subglacial sediments; while the lower is interpreted as a transition between frozen and unfrozen subglacial sediment. Dipping reflectors, corresponding to sediment-filled features on the cliff and glacier surface, do not cross the glacier bed. A small number of reflectors, interpreted as thrust faults, are visible below the bed reflector. A model is developed for structural development, which suggests that ice built up in a reservoir zone during quiescence. During the surge, ice propagated rapidly from this reservoir, creating a zone of compression which resulted in thrusting. Subsequently an extensional flow regime resulted in extensive fracture of the ice. We suggest dilated sediment was evacuated into these extensional crevasses from the glacier bed, accelerating surge termination.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvegen, Svalbard
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvegen, Svalbard
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvegen, Svalbard
      Available formats
      ×

Copyright

References

Hide All
Arcone, S. A., Lawson, D. E. and Delaney, A. J.. 1995. Short-pulse radar wavelet recovery and resolution of dielectric contrasts within englacial and basal ice of Matanuska Glacier, Alaska, U.S.A. J. Glaciol., 41(137), 6886.
Bennett, M. R., Hambrey, M. J., Huddart, D. and Ghienne, J. F.. 1996. The formation of a geometrical ridge network by the surge-type glacier Kongsvegen, Svalbard. J. Quat. Sci., 11(6), 437449.
Bennett, M. R., Huddart, D. and Waller, R. I.. 2000. Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skei ararjokull, Iceland. J. Glaciol., 46(152), 2534.
Björnsson, H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.
Boulton, G. S. and Dent, D. L.. 1974. The nature and rates of post-depositional changes in recently deposited till from south-east Iceland. Geogr. Ann., 56A(3–4), 121134.
Clapperton, C. M. 1975. The debris content of surging glaciers in Svalbard and Iceland. J. Glaciol., 14(72), 395406.
Clarke, G. K. C. 1976. Thermal regulation of glacier surging. J. Glaciol., 16(74), 231250.
Clarke, G. K. C., Collins, S. G. and Thompson, D. E.. 1984. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 232240.
Dowdeswell, J. A., Hamilton, G. S. and Hagen, J. O.. 1991. The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions. J. Glaciol., 37(127), 388400.
Ensminger, S. L., Alley, R. B., Evenson, E. B., Lawson, D. E. and Larson, G. J.. 2001. Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A. J. Glaciol., 47(158), 412422.
Evans, D. J. A. and Rea, B. R.. 1999. Geomorphology and sedimentology of surging glaciers: a land-systems approach. Ann. Glaciol., 28, 7582.
Fowler, A. C., Murray, T. and Ng, F. S. L.. 2001. Thermally controlled glacier surging. J. Glaciol., 47(159), 527538.
Glasser, N. F., Hambrey, M. J., Crawford, K. R., Bennett, M. R. and Huddart, D.. 1998. The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis. J. Glaciol., 44(146), 136148. (Erratum: 46(154), 2000, p. 538.)
Glover, J. M. and Rees, H.V.. 1992. Radar investigations of firn structures and crevasses. Geol. Surv. Can. Pap. 90-4, 7584.
Gudmandsen, P. 1975. Layer echoes in polar ice sheets. J. Glaciol., 15(73), 95101.
Hagen, J. O., Liest l, O., Roland, E. and Jørgensen, T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Nor. Polarinst. Medd. 129.
Hambrey, M. J., Dowdeswell, J. A., Murray, T. and Porter, P. R.. 1996.Thrusting and debris entrainment in a surging glacier: Bakaninbreen, Svalbard. Ann. Glaciol., 22, 241248.
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F. and Huddart, D.. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45(149), 6986.
Jezek, K. C., Bentley, C. R. and Clough, J.W.. 1979. Electromagnetic sounding of bottom crevasses on the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 321330.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100.
Kovacs, A. and Gow, A. J.. 1975. Brine infiltration in the McMurdo Ice Shelf, McMurdo Sound, Antarctica. J. Geophys. Res., 80(15), 19571961.
Lefauconnier, B., Hagen, J. O. and Rudant, J.-P.. 1994. Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Polar Res., 13(1), 5965.
Macheret, Yu. Ya. and Zhuravlev, A. B.. 1982. Radio echo-sounding of Svalbard glaciers. J. Glaciol., 28(99), 295314.
Melvold, K. and Hagen, J. O.. 1998. Evolution of a surge-type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964–95. J. Glaciol., 44(147), 394404.
Murray, T., Gooch, D. L. and Stuart, G.W.. 1997. Structures within the surge front at Bakaninbreen, Svalbard, using ground-penetrating radar. Ann. Glaciol., 24, 122129.
Murray, T., Dowdeswell, J. A., Drewry, D. J. and Frearson, I.. 1998. Geometric evolution and ice dynamics during a surge of Bakaninbreen, Svalbard. J. Glaciol., 44(147), 263272. (Erratum: 45(150), 1999, 405.)
Murray, T., Stuart, G.W., Fry, M., Gamble, N. H. and Crabtree, M. D.. 2000a. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. J. Glaciol., 46(154), 389398.
Murray, T. and 6 others. 2000b. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Nobes, D. C., Leary, S. F., Hochstein, M. P. and Henrys, S. A.. 1994. Ground penetrating radar of rubble-covered glaciers: results from the Tasman and Mueller Glaciers of the Southern Alps of New Zealand. Society of Exploration Geophysicists Annual Meeting. Expanded Abstracts 64, 826829.
Oélsner, C. 1966. Ergenbnisse von Gravimetermessungen im Kingsbay-Gebeit (Westspitsbergen). Petermanns Geogr. Mitt., 110(2), 111116.
Post, A. 1969. Distribution of surging glaciers in western North America. J. Glaciol., 8(53), 229240.
Raymond, C. F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92(B9), 91219134.
Robin, G. de Q. 1955. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol., 2(18), 523532.
Sharp, M. 1984. Annual moraine ridges at Skalafellsjokull, south-east Iceland. J. Glaciol., 30(104), 8293.
Sharp, M. 1985. “Crevasse-fill” ridges — a landform type characteristic of surging glaciers? Geogr. Ann., 67A(3–4), 213220.
Woodward, J., Murray, T. and McCaig, A.. 2002. Formation and reorientation of structure in the surge-type glacier Kongsvegen, Svalbard. J. Quat. Sci., 17(3), 201209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed