Skip to main content
×
×
Home

Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait

  • E. L. SHROYER (a1), L. PADMAN (a2), R. M. SAMELSON (a1), A. MÜNCHOW (a3) and L. A. STEARNS (a4)...
Abstract

Petermann Gletscher drains ~4% of the Greenland ice sheet (GrIS) area, with ~80% of its mass loss occurring by basal melting of its ice shelf. We use a high-resolution coupled ocean and sea-ice model with a thermodynamic glacial ice shelf to diagnose ocean-controlled seasonality in basal melting of the Petermann ice shelf. Basal melt rates increase by ~20% in summer due to a seasonal shift in ocean circulation within Nares Strait that is associated with the transition from landfast sea ice to mobile sea ice. Under landfast ice, cold near-surface waters are maintained on the eastern side of the strait and within Petermann Fjord, reducing basal melt and insulating the ice shelf. Under mobile sea ice, warm waters are upwelled on the eastern side of the strait and, mediated by local instabilities and eddies, enter Petermann Fjord, enhancing basal melt down to depths of 200 m. The transition between these states occurs rapidly, and seasonal changes within Nares Strait are conveyed into the fjord within the same season. These results suggest that long-term changes in the length of the landfast sea-ice season will substantially alter the structure of Petermann ice shelf and its contribution to GrIS mass loss.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: E. L. Shroyer <eshroyer@coas.oregonstate.edu>
References
Hide All
Ahlstrøm, AP and 13 others (2013) Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth Syst. Sci. Data 5(2), 277287 (doi: 10.5194/essd-5-277-2013)
Bindschadler, RA and 27 others (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol. 59(214), 195224 (doi: 10.3189/2013JoG12J125)
Dumont, D, Gratton, Y and Arbetter, TE (2009) Modeling the dynamics of the North Water polynya ice bridge. J. Phys. Oceanogr. 39(6), 14481461
Hibler, WD, Hutchings, JK and Ip, CF (2006) Sea-ice arching and multiple flow states of Arctic pack ice. Ann. Glaciol. 44(1), 339344
Holland, DM and Jenkins, A (1999) Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29(8), 17871800 (doi: 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2)
Holland, DM, Thomas, RH, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1(10), 659664 (doi: 10.1038/ngeo316)
Jakobsson, M and 30 others (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 39(12) (doi: 10.1029/2012GL052219)
Johnson, HL, Münchow, A, Falkner, KK and Melling, H (2011) Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res. 116(C), 1003
Joughin, I, Alley, RB and Holland, DM (2012) Ice-sheet response to oceanic forcing. Science. 338(6111), 11721176 (doi: 10.1126/science.1226481)
Kwok, R (2005) Variability of Nares Strait ice flux. Geophys. Res. Lett. 32(24), 14 (doi: 10.1029/2005GL024768)
Kwok, R, Pedersen, LT, Gudmandsen, P and Pang, SS (2010) Large sea ice outflow into the Nares Strait in 2007. Geophys. Res. Lett. 37(3) (doi: 10.1029/2009GL041872)
Losch, M (2008) Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Ocean. 113(8) (doi: 10.1029/2007JC004368)
Losch, M, Menemenlis, D, Campin, JM, Heimbach, P and Hill, C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations on parameterizations. Ocean Model. 33, 129144
Marshall, J, Adcroft, A, Hill, C and Perelman, L (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 57535766
Milne, GA, Gehrels, WR, Hughes, CW and Tamisiea, ME (2009) Identifying the causes of sea-level change. Nat. Geosci. 2(7), 471478 (doi: 10.1038/ngeo544)
Motyka, RJ and 5 others (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. 116(F01007), 10.1029/2009JF001632
Mouginot, J and 7 others (2015) Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science (80). http://science.sciencemag.org/content/early/2015/11/11/science.aac7111.abstract
Münchow, A (2016) Volume and freshwater flux observations from Nares Strait to the west of Greenland at daily time scales from 2003 to 2009. J. Phys. Oceanogr. 46(1), 141157 (doi: 10.1175/JPO-D-15-0093.1)
Münchow, A, Falkner, K, Melling, H, Rabe, B and Johnson, H (2011) Ocean warming of Nares Strait bottom waters off Northwest Greenland, 2003–2009. Oceanography 24(3), 114123 (doi: 10.5670/oceanog.2011.62)
Münchow, A, Padman, L and Fricker, HA (2014) Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol. 60(221), 489499 (doi: 10.3189/2014JoG13J135)
Münchow, A, Washam, AP, Padman, L and Nicholls, K (2016) The ice shelf of Petermann Gletscher, North Greenland and its connection to Arctic and Atlantic oceans. Oceanography submitted
Nick, FM and 9 others (2012) The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol. 58(208), 229239 (doi: 10.3189/2012JoG11J242)
Pollard, D, DeConto, RM and Alley, RB (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112121 (doi: 10.1016/j.epsl.2014.12.035)
Preußer, A, Heinemann, G, Willmes, S and Paul, S (2015) Multi-decadal variability of polynya characteristics and ice production in the North Water Polynya by means of passive microwave and thermal infrared satellite imagery. Remote Sensing 7(12) (doi: 10.3390/rs71215807)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7), 971975
Rabe, B, Münchow, A, Johnson, HL and Melling, H (2012) Geostrophic currents and freshwater fluxes through Nares Strait to the west of northern Greenland. J. Marine Res. 70(4), 603640 http://www.ingentaconnect.com/content/jmr/jmr/2012/00000070/00000004/art00002
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311 (80). (101126/science.1121381), 986990
Rignot, E and Steffen, K (2008) Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 35(2) (doi: 10.1029/2007GL031765)
Rignot, E, Mouginot, J, Morlighem, M, Seroussi, H and Scheuchl, B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41(10), 35023509 (doi: 10.1002/2014GL060140)
Samelson, RM and Barbour, PL (2008) Low-level jets, orographic effects, and extreme events in nares strait: a model-based mesoscale climatology. Mon. Weather Rev. 136(12), 47464759 (doi: 10.1175/2007MWR2326.1)
Shepherd, A and 45 others (2012) A reconciled estimate of ice-sheet mass balance. Science (80). 338(6111), 11831189 http://science.sciencemag.org/content/338/6111/1183.abstract
Shroyer, EL, Samelson, RM, Padman, L and Münchow, A (2015) Modeled ocean circulation in Nares Strait and its dependence on landfast-ice cover. J. Geophys. Res. Ocean. 120(12), 79347959 (doi: 10.1002/2015JC011091)
Sodhi, DS (1977) Ice arching and the drift of pack ice through restricted channels. CRREL Rep. 77(18), 111
Stern, N (2006) The economics of climate change. Stern Rev., 662 (doi: 10.1257/aer.98.2.1)
Straneo, F and Heimbach, P (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504(7478), 3643 https://doi.org/10.1038/nature12854
Straneo, F and 15 others (2013) Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Meteorol. Soc. 94(8), 11311144 (doi: 10.1175/BAMS-D-12-00100.1)
Vaughan, DG and 13 others (2013) Observations: Cryosphere. in Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 317382 (doi: 10.1017/CBO9781107415324.012)
Wang, M and Overland, JE (2012) A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. 39(18), n/a-n/a (doi: 10.1029/2012GL052868)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed