Skip to main content Accessibility help
×
Home

Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland

  • Eef van Dongen (a1), Guillaume Jouvet (a1), Andrea Walter (a1) (a2), Joe Todd (a3), Thomas Zwinger (a4), Izumi Asaji (a5), Shin Sugiyama (a5), Fabian Walter (a1) and Martin Funk (a1)...

Abstract

Retreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events resulting from kilometre-scale fractures forming parallel to the calving front. High-resolution terrestrial radar interferometry data of such an event reveal that crevasse opening is fastest at low tide and accelerates during the final 36 h before calving. Using the ice flow model Elmer/Ice, we identify the crevasse water level as a key driver of modelled opening rates. Sea water-level variations in the range of local tidal amplitude (1 m) can reproduce observed opening rate fluctuations, provided crevasse water level is at least 4 m above the low-tide sea level. The accelerated opening rates within the final 36 h before calving can be modelled by additional meltwater input into the crevasse, enhanced ice cliff undercutting by submarine melt, ice damage increase due to tidal cyclic fatigue, crevasse deepening or a combination of these processes. Our results highlight the influence of surface meltwater and tides on crevasse opening leading to major calving events at grounded tidewater glaciers such as Bowdoin.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Eef van Dongen, E-mail: vandongen@vaw.baug.ethz.ch

References

Hide All
Åström, JA and 10 others (2014) Termini of calving glaciers as self-organized critical systems. Nature Geoscience 7(12), 874878. doi:10.1038/ngeo2290
Bamber, JL, Westaway, RM, Marzeion, B and Wouters, B (2018) The land ice contribution to sea level during the satellite era. Environmental Research Letters 13(6), 063008. doi:10.1088/1748-9326/aac2f0
Benn, DI and 7 others (2017a) Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. Journal of Glaciology 63(240), 691702. doi:10.1017/jog.2017.41
Benn, DI and Åström, JA (2018) Calving glaciers and ice shelves. Advances in Physics X 3(1), 1513819. doi:10.1080/23746149.2018.1513819
Benn, DI, Cowton, T, Todd, J and Luckman, A (2017b) Glacier calving in greenland. Current Climate Change Reports 3(4), 282290. doi:10.1007/s40641-017-0070-1
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Science Reviews 82, 143179.
Bulthuis, K, Arnst, M, Sun, S and Pattyn, F (2019) Uncertainty quantification of the multi-centennial response of the antarctic ice sheet to climate change. Cryosphere 13(4), 13491380. doi:10.5194/tc-13-1349-2019
Caduff, R, Schlunegger, F, Kos, A and Wiesmann, A (2015) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surface Processes and Landforms 40(2), 208228.
Choi, Y, Morlighem, M, Wood, M and Bondzio, JH (2018) Comparison of four calving laws to model Greenland outlet glaciers. Cryosphere 12(12), 37353746. doi:10.5194/tc-12-3735-2018
Christmann, J, Plate, C, Müller, R and Humbert, A (2016) Viscous and viscoelastic stress states at the calving front of antarctic ice shelves. Annals of Glaciology 57(73), 1018.
Colgan, W and 6 others (2016) Glacier crevasses: observations, models, and mass balance implications. Reviews of Geophysics (Washington, D.C. 54(1), 119161. doi:10.1002/2015RG000504
Cook, S, Zwinger, T, Rutt, I, O'Neel, S and Murray, T (2012) Testing the effect of water in crevasses on a physically based calving model. Annals of Glaciology 53(60), 9096.
Dapogny, C, Dobrzynski, C and Frey, P (2014) Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. Journal of Computational Physics 262, 358378.
Depoorter, MA and 6 others (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502(7469), 8992.
Fried, MJ and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophysical Research Letters 42(21), 93289336.
Gagliardini, O and 9 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geoscientific Model Development 6(4), 12991318.
Geuzaine, C and Remacle, JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 13091331.
Gillet-Chaulet, F and 8 others (2012) Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6(6), 15611576.
Glen, JW (1955) The creep of polycrystalline ice. Proceedings of the Royal Society A 228(1175), 519538.
Hock, R and Jansson, P (2005) Modeling glacier hydrology. Encyclopedia of Hydrological Sciences 4, 26472655. doi: 10.1002/0470848944.hsa176.
How, P (2019) Calving controlled by melt-under-cutting: detailed calving styles revealed through time-lapse observations. Annals of Glaciology 60(78), 2031. doi: 10.1017/aog.2018.28.
Hulbe, CL and 5 others (2016) Tidal bending and strand cracks at the Kamb Ice Stream grounding line, West Antarctica. Journal of Glaciology 62(235), 816824. doi:10.1017/jog.2016.74
Hulbe, CL, LeDoux, C and Cruikshank, K (2010) Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation. Journal of Glaciology 56(197), 459472.
Imbie team (2018) Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219222. doi:10.1038/s41586-018-0179-y
James, TD, Murray, T, Selmes, N, Scharrer, K and O'Leary, M (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nature Geoscience 7(8), 593.
Jellinek, H and Brill, R (1956) Viscoelastic properties of ice. Journal of Applied Physics 27(10), 11981209.
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Journal of Physical Oceanography 41(12), 22792294.
Jouvet, G and 7 others (2017) Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry. Cryosphere 11(2), 911921. doi:10.5194/tc-11-911-2017
Jouvet, G and 6 others (2018) Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sensing of Environment 217, 389399. doi:10.1016/j.rse.2018.08.027
Krug, J, Weiss, J, Gagliardini, O and Durand, G (2014) Combining damage and fracture mechanics to model calving. Cryosphere 8(6), 21012117.
Luckman, A and 5 others (2015) Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications 6, 8566. doi:10.1038/ncomms9566
Mahrenholtz, O and Wu, Z. Determination of creep damage parameters for polycrystalline ice. In Advances in Ice Technology (3rd International Conference on Ice Technology/Cambridge USA), pages 181–192. Computational Mechanics Publications 1992.
Medrzycka, D, Benn, DI, Box, JE, Copland, L and Balog, J (2016) Calving behavior at Rink Isbræ, West Greenland, from time-lapse photos. Arctic, Antarctic, and Alpine Research 48(2), 263277. doi:10.1657/AAAR0015-059
Minowa, M (2019) Calving flux estimation from tsunami waves. Earth and Planetary Science Letters 515, 283290. doi: 10.1016/j.epsl.2019.03.023.
Münchow, A, Padman, L and Fricker, HA (2014) Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology 60(221), 489499.
O'Leary, M and Christoffersen, P (2013) Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7(1), 119128.
Paterson, WSB (1994) The Physics of Glaciers, 3rd edition. New York: Pergamon.
Podolskiy, EA and 7 others (2016) Tide-modulated ice flow variations drive seismicity near the calving front of Bowdoin Glacier, Greenland. Geophysical Research Letters 43(5), 20362044. doi:10.1002/2016GL067743
Pralong, A and Funk, M (2005) Dynamic damage model of crevasse opening and application to glacier calving. Journal of Geophysical Research 110(B1), 112. doi: 10.1029/2004JB003104.
Reeh, N, Christensen, EL, Mayer, C and Olesen, OB (2003) Tidal bending of glaciers: a linear viscoelastic approach. Annals of Glaciology 37, 8389.
Rignot, E, Fenty, I, Xu, Y, Cai, C and Kemp, C (2015) Undercutting of marine-terminating glaciers in West Greenland. Geophysical Research Letters 42(14), 59095917.
Seddik, H and 5 others (2019) Response of the flow dynamics of Bowdoin Glacier, Northwestern Greenland, to basal lubrication and tidal forcing. Journal of Glaciology 65(250), 225238. doi:10.1017/jog.2018.106
Sugiyama, S, Sakakibara, D, Tsutaki, S, Maruyama, M and Sawagaki, T (2015) Glacier dynamics near the calving front of Bowdoin Glacier, Northwestern Greenland. Journal of Glaciology 61(226), 223232. doi:10.3189/2015JoG14J127
Todd, J and 9 others (2018) A full-Stokes 3-d calving model applied to a large Greenlandic Glacier. Journal of Geophysical Research: Earth Surface 123(3), 410432. doi:10.1002/2017JF004349
Truffer, M and Motyka, RJ (2016) Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings. Reviews of Geophysics (Washington, D.C. 54(1), 220239. doi:10.1002/2015RG000494
Tsutaki, S, Sugiyama, S and Sakakibara, D (2017) Surface elevations on Qaanaaq and Bowdoin Glaciers in northwestern Greenland as measured by a kinematic GPS survey from 2012–2016. Polar Data Journal 1, 116.
Tsutaki, S, Sugiyama, S, Sakakibara, D and Sawagaki, T (2016) Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, Northwestern Greenland. Journal of Glaciology 62(236), 10831092. doi:10.1017/jog.2016.106
Vallot, D and 9 others (2018) Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard. Cryosphere 12(2), 609625. doi:10.5194/tc-12-609-2018
Van den Broeke, MR and 7 others (2016) On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10(5), 19331946. doi:10.5194/tc-10-1933-2016
Van der Veen, CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Journal of Geophysical Research 34(L01501), 15. doi: 10.1029/2006GL028385.
Walter, F (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophysical Research Letters 37(15), 15
Werner, C, Strozzi, T, Wiesmann, A and Wegmüller, U. GAMMA's portable radar interferometer. In Proceedings of the 13th FIG Symposium Deformation Measurements and Analysis, Lisbon, Portugal, pages 1–10, 2008.
Xu, Y, Rignot, E, Fenty, I, Menemenlis, D and Flexas, MM (2013) Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters 40(17), 46484653.
Yu, H, Rignot, E, Morlighem, M and Seroussi, H (2017) Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics. Cryosphere 11(3), 12831296. doi:10.5194/tc-11-1283-2017

Keywords

Type Description Title
VIDEO
Supplementary materials

van Dongen et al. supplementary material
van Dongen et al. supplementary material 1

 Video (5.3 MB)
5.3 MB
PDF
Supplementary materials

van Dongen et al. supplementary material
van Dongen et al. supplementary material 2

 PDF (6.6 MB)
6.6 MB

Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland

  • Eef van Dongen (a1), Guillaume Jouvet (a1), Andrea Walter (a1) (a2), Joe Todd (a3), Thomas Zwinger (a4), Izumi Asaji (a5), Shin Sugiyama (a5), Fabian Walter (a1) and Martin Funk (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed