Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-14T17:24:49.443Z Has data issue: false hasContentIssue false

Acanthocheilonema viteae (Dipetalonema viteae) in mice: differences in the relative binding of microfilarial surface-specific antibody may explain the contrasting response phenotypes of BALB/c and C57BL/10

Published online by Cambridge University Press:  05 June 2009

A. J. Gatrill
Affiliation:
MRC Experimental Parasitology Research Group, Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
J. Kee
Affiliation:
MRC Experimental Parasitology Research Group, Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
J. M. Behnke*
Affiliation:
MRC Experimental Parasitology Research Group, Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
D. Wakelin
Affiliation:
MRC Experimental Parasitology Research Group, Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
*
2Author to whom all correspondence should be addressed.

Abstract

Experiments were carried out to obtain additional data concerning the role of IgM antibodies, specific for the cuticular surface of the microfilariae (mf) of A. viteae, in clearing microfilaraemia from high-and low-responder mice infected by transplanted adult worms. Although BALB/c mice, which sustain a chronic microfilaraemia, produced IgM mf surface-specific antibodies, the binding to target mf was weak when compared to that of antibodies from the serum of the resistant C57BL/10 mice. Furthermore, antibodies from BALB/c mice were not as efficient as those from C57BL/10 mice in promoting the adherence of immune or control leukocytes to mf in vitro. Evidence is provided to show that mf shed surface bound antibody. Although the results do not establish conclusively the mechanism underlying the contrasting response phenotypes of C57BL/10 and BALB/c mice, they provide support for the involvement of antibody in controlling microfilaraemia and suggest that quantitative and qualitative differences in the amount and affinity of IgM antibody specific for the mf surface, together with the natural tendency of the mf to shed surface bound antibody at 37°C. may combine to allow the former strain to clear microfilaraemia efficiently whilst the latter sustains a chronic infection.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apel, H. & Meyer, T. F. (1990) Active release of surface proteins: a mechanism associated with the immune escape of Acanthocheilonema viteae microfilariae. Molecular and Biochemical Parasitology, 43, 199210.Google Scholar
Almond, N. M., Worms, M. J., Harnett, W. & Parkhouse, R. M. E. (1987) Variation in class specific humoral immune responses of different mouse strains to Dipetalonema viteae. Parasitology, 95, 559568.Google Scholar
Carlow, C. K. S., Perrone, J., Spielman, A. & Philipp, M. (1987) A developmentally regulated surface epitope expressed by the infective larva of Brugia malayi which is rapidly lost after infection. In: Molecular Paradigms for Eradicating Helminthic Parasites. pp. 301310. Alan R. Liss, Inc.: New York.Google Scholar
Devaney, E. (1988) The biochemical and immunochemical characterization of the 30 kilodalton surface antigen of Brugia pahangi. Molecular and Biochemical Parasitology, 9, 8392.Google Scholar
Edwards, M. K., Busto, P., James, E. R., Carlow, C. K. S. & Philipp, M. (1990) Antigenic and dynamic properties of the surface of Onchocerca microfilariae. Tropical Medicine and Parasitology, 41, 174180.Google Scholar
Egwang, T. G. & Kazura, J. W (1987) Immunochemical characterisation and biosynthesis of major antigens of iodo-bead surface labelled Brugia pahangi microfilariae. Molecular and Biochemical Parasitology, 22, 159168.CrossRefGoogle Scholar
Ham, P. J. & Bianco, A. E. (1981) Quantification of a cryopreservation technique for Onchocerca microfilariae in skin snips. Journal of Helminthology, 55, 5961.CrossRefGoogle ScholarPubMed
Hammerberg, B., Rikihisa, Y. & King, M. W. (1984) Immunoglobulin interactions with surfaces of sheathed and unsheathed microfilariae. Parasite Immunology, 6, 421439.Google Scholar
Haque, A., Worms, M. J., Ogilvie, B. M. & Capron, A. (1980) Dipetalonema viteae: microfilarial production in various mouse strains and in nude mice. Experimental Parasitology, 49, 398404.Google Scholar
Mackenzie, C. D., Jungery, M., Taylor, P. M. & Ogilvie, B. M. (1981) The in vitro interaction of eosinophils, neutrophils, macrophages and mast cells with nematode surfaces in the presence of complement or antibodies. Journal of Pathology, 133, 161175.Google Scholar
Oxenham, S. L., Mackenzie, C. D. & Denham, D. A. (1984) Increased activity of macrophages from mice infected with Brugia pahangi: in vitro adherence to microfilariae. Parasite Immunology, 6, 141156.Google Scholar
Philipp, M., Worms, M. J., Maizels, R. M. & Ogilvie, B. M. (1984) Rodent models of filariasis. In: Contemporary Topics of Immunology, 12, 275321. Plenum Publishing Corp., New York.Google Scholar
Rzepczyk, C. M. & Bishop, C. J. (1984) Immunological and ultrastructural aspects of the cell-mediated killing of Dirofilaria immitis microfilariae. Parasite Immunology, 6, 443457.Google Scholar
Rzepczyk, C. M., Bishop, C. J. & Atwell, R. B. (1986) The ability of microfilariae to evade in vitro cell-mediayyted cytotoxicity. Zeitschrift für Parasitenkunde, 72, 241249.Google Scholar
Scher, I., Steinberg, A. D., Berning, A. K. & Paul, W. E. (1975) X-linked B lymphocyte immune defect in CBA/HN mice. II. Studies on the mechanisms underlying the immune defect. Journal of Experimental Medicine, 142, 637650.CrossRefGoogle Scholar
Scott, A. L., Diala, C., Moraga, D. A., Ibraham, M. S., Redding, L. & Tamashiro, W. K. (1988) Dirofilaria immitis: biochemical and immunological characterization of the surface antigens from adult parasites. Experimental Parasitology, 67, 307323.Google Scholar
Smith, H. V., Quinn, R., Kusel, J. R. & Girdwood, R. W. A. (1981) The effect of temperature and antimetabolites on antibody binding to the outer surface of second stage Toxocara canis larvae. Molecular and Biochemical Parasitology, 4, 183193.Google Scholar
Storey, N., Behnke, J. M. & Wakelin, D. (1987) Immunity to Dipetalonema viteae infections in resistant and susceptible mice. Acta Tropica, 44, 4354.Google ScholarPubMed
Storey, N., Behnke, J. M. & Wakelin, D. (1989) Acanthocheilonema viteae in mice: attempts to correct the low responder phenotype of the BALB/c host. International Journal for Parasitology, 19, 723727.CrossRefGoogle ScholarPubMed
Storey, N., Wakelin, D. & Behnke, J. M. (1985) The genetic control of host responses to Dipetalonema viteae (Filarioidea) infections in mice. Parasite Immunology, 7, 349358.CrossRefGoogle ScholarPubMed
Thompson, J. P., Crandall, R. B., Crandall, C. A. & Neilson, J. T. (1979) Clearance of microfilariae of Dipetalonema viteae in CBA/N and CBA/H mice. Journal of Parasitology, 65, 966969.CrossRefGoogle ScholarPubMed
Vetter, J. C. M. & Klaver-Wesseling, J. C. M. (1978) IgG antibody binding to the outer surface of infective larvae of Ancylostoma caninum. Zeitschrift für Parasitenkunde, 58, 9196.CrossRefGoogle Scholar
Weiss, N. (1970) Parasitologische und immunobiologische untersuchungen uber die durch Dipetalonema viteae erzeugte Nagertierfilariose. Acta Tropica, 27, 219259.Google Scholar
Worms, J. M., Terry, R. J. & Terry, A. (1961) Dipetalonema viteae, filarial parasite of the jird, Meriones lybicus. 1. Maintenance in the laboratory. Journal of Parasitology, 47, 936970.CrossRefGoogle Scholar
Yen, P. K. F., Holt, P. G., Stanley, N. F. & Turner, K. J. (1986) In vitro antibody mediated macrophage activity on Breinlia macropi microfilariae. 1. Adherence and cytotoxicity. Parasite Immunology, 8, 139147.Google Scholar