Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T21:27:07.742Z Has data issue: false hasContentIssue false

Survey of slug-parasitic nematodes in East and West Flanders, Belgium and description of Angiostoma gandavensis n. sp. (Nematoda: Angiostomidae) from arionid slugs

Published online by Cambridge University Press:  14 February 2019

P.R. Singh*
Affiliation:
Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
M. Couvreur
Affiliation:
Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
W. Decraemer
Affiliation:
Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
W. Bert
Affiliation:
Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
*
Author for correspondence: P.R. Singh, E-mail: PhougeishangbamRolish.Singh@UGent.be

Abstract

A survey for slug-associated nematodes in five locations of East and West Flanders in Belgium revealed the presence of one new and six known slug-parasitic nematodes, Agfa flexilis (Dujardin, 1845), Alloionema appendiculatum (Schneider, 1859), Angiostoma dentiferum (Mengert, 1953), Angiostoma limacis (Dujardin, 1845), Angiostoma norvegicum (Ross et al., 2017) and Phasmarhabditis hermaphrodita (Schneider, 1859). Angiostoma norvegicum and P. hermaphrodita are recorded for the first time in Belgium. The six known species are documented by light microscopy (LM) microphotographs and informative DNA sequences. Angiostoma gandavensis n. sp. (Angiostomatidae), discovered from arionid slugs, is described based on light microscopy, scanning electron microscopy (SEM) and molecular data. Based on analyses of D2D3 expansion segment of 28S and 18S rDNA sequences, this new species is found to be related to A. limacis, A. norvegicum, A. margaretae (Ross et al., 2011) and A. milacis (Ivanova and Wilson, 2009). The new species can be distinguished from these others based on morphological characters such as the distinctive mucronate structures at the tail tip of both sexes, presence of lateral ala, reflexed female ovaries and the number and arrangement pattern of male genital papillae.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Charwat, SM and Davies, KA (1999) Laboratory screening of nematodes isolated from South Australia for potential as biocontrol agents of helicid snails. Journal of Invertebrate Pathology 74, 5561.Google Scholar
Deagle, BE et al. (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters, https://doi.org/10.1098/rsbl.2014.0562.Google Scholar
Dujardin, F (1845) Histoire Naturelle des Helminthes ou Vers Intestinaux. 654 pp. Paris, France: Librairie Encyclopédique de Roret.Google Scholar
Gleich, JG, Gilbert, FF and Kutscha, NP (1977) Nematodes in terrestrial gastropods from central Maine. Journal of Wildlife Disease 13, 4346.Google Scholar
Hebert, PDN et al. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270, 313322.Google Scholar
Hooper, DJ et al. (1999) Some observations on the morphology and protein profiles of the slug-parasitic nematodes Phasmarhabditis hermaphrodita and P. neopapillosa (Nematoda: Rhabditidae). Nematology 2, 173182.Google Scholar
Huelsenbeck, JP and Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.Google Scholar
Ivanova, ES and Spiridonov, SE (2010) Angiostoma glandicola sp. n. (Nematoda: Angiostomatidae): a parasite in the land snail Megaustenia sp. from the Cat Tien Forest, Vietnam. Journal of Helminthology 84, 297304.Google Scholar
Ivanova, ES and Spiridonov, SE (2018) Angiostoma meets Phasmarhabditis: a case of Angiostoma kimmeriense Korol & Spiridonov, 1991. Russian Journal of Nematology 26, 7785.Google Scholar
Ivanova, ES and Wilson, MJ (2009) Two new species of Angiostoma Dujardin, 1845 (Nematoda: Angiostomatidae) from British terrestrial molluscs. Systematic Parasitology 74, 113124.Google Scholar
Ivanova, ES, Panayotova-Pencheva, MS and Spiridonov, SE (2013) Observations on the nematode fauna of terrestrial molluscs of the Sofia area (Bulgaria) and the Crimea peninsula (Ukraine). Russian Journal of Nematology 21, 4149.Google Scholar
Kanzaki, N and Futai, K (2002) A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4, 3541.Google Scholar
Kerney, M, Cameron, RAD and Riley, G (1979) A Field Guide to the Land Snails of Britain and North-west Europe. 1st edn. 288 pp. London: Collins.Google Scholar
Korol, EN and Spiridonov, SE (1991) Angiostoma kimmeriensis sp. n. and Agfa taurica sp. n. – parasitic Rhabditida (Nematoda) from Crimean terrestrial molluscs. Helminthologia 28, 179182.Google Scholar
Laznik, Ž et al. (2009) First record of the nematode Alloionema appendiculatum Schneider (Rhabditida: Alloionematidae) in Arionidae slugs in Slovenia. Russian Journal of Nematology 17, 145147.Google Scholar
Luc, PV, Spiridonov, SE and Wilson, MJ (2005) Aulachnema monodelphis n. g., n. sp. and Angiostoma coloaense n. sp. (Nematoda: Rhabditida: Angiostomatidae) from terrestrial molluscs of Vietnam. Systematic Parasitology 60, 9197.Google Scholar
MacMillen, K et al. (2009) Dispersal patterns and behaviour of the nematode Phasmarhabditis hermaphrodita in mineral soils and organic media. Soil Biology and Biochemistry 41, 14831490.Google Scholar
Mayer, WE, Herrmann, M and Sommer, RJ (2007) Phylogeny of the nematode genus Pristionchus and implications for biodiversity, biogeography and the evolution of hermaphroditism. BMC Evolutionary Biology, https://doi.org/10.1186/1471-2148-7-104.Google Scholar
McDonnell, RJ, Paine, TD and Gormally, MJ (2009) Slugs: A Guide to the Invasive and Native Fauna of California. University of California Agricultural and Natural Resources Publications.Google Scholar
Mengert, H (1953) Nematoden und Schnecken. Zeitschrift für Morphologie und Ökologie Tiere 41, 311349.Google Scholar
Morand, S (1986) Angiostoma aspersae sp. n. (Nematoda, Angiostomaidae) parasite de Helix aspersa Müller (Gastropoda, Helicidae). Bulletin du Muséum National d'Histoire Naturelle Paris 11, 111115.Google Scholar
Morand, S (1988) Contribution al’ étude d'un système hôtesparasites: Nématodes associés à quelques Mollusques terrestres. 335 pp. Thèse Université Rennes I.Google Scholar
Morand, S (1992) Angiostoma spiridonovi n. sp. (Nematoda: Angiostomatidae) from Limax flavus (Gastropoda: Limacidae). Journal of the Helminthological Society of Washington 59, 212217.Google Scholar
Morand, S and Barker, GM (1995) Angiostoma schizoglossae n. sp. (Nematoda, Angiostomatidae) from the New Zealand endemic slug Schizoglossa novoseelandica (Gastropoda: Rhytididae). Journal of Parasitology 81, 9498.Google Scholar
Morand, S and Spiridonov, SE (1989) Redescription de trois espèces d'Angoistomatidae (Nematoda, Rhabditida), parasites de Gastropodes Pulmonés Styllomathophores, et description du cycle èvolutif de deux d'entre elles. Bulletin du Muséum National d'Historie Naturelle Paris 11, 367385.Google Scholar
Morand, S, Wilson, MJ and Glen, DM (2004) Nematodes (Nematoda) parasitic in terrestrial gastropods. In GM, Baker (ed.), Natural Enemies of Terrestrial Molluscs. London, UK: CABI Publishing, pp. 525557.Google Scholar
Nunn, GB (1992) Nematode molecular evolution. An investigation of evolutionary patterns among nematodes based upon DNA sequences. Ph.D. thesis. University of Nottingham, UK.Google Scholar
Nguyen, TD et al. (2017) Morphological and molecular characteristics of Pratylenchus haiduongensis sp. n., a new species of root-lesion nematodes associated with carrot in Vietnam. Journal of Nematology 49, 276285.Google Scholar
Rae, RG et al. (2007) Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita – progress and prospects. Pest Management Science 63, 11531164.Google Scholar
Rae, RG, Robertson, JF and Wilson, MJ (2009) Chemoattraction and host preference of the gastropod parasitic nematode Phasmarhabditis hermaphrodita. Journal of Parasitology 95, 517526.Google Scholar
Ross, JL et al. (2010a) The role of parasite release in invasion of the USA by European slugs. Biological Invasions 12, 603610.Google Scholar
Ross, JL et al. (2010b) Molecular phylogeny of slug-parasitic nematodes inferred from 18S rRNA gene sequences. Molecular Phylogenetics and Evolution 55, 738743.Google Scholar
Ross, JL, Ivanova, ES and Malan, AP (2011) Angiostoma margaretae n. sp (Nematoda: Angiostomatidae) a parasite of the milacid slug Milax gagates Draparnaud collected near Caledon, South Africa. Systematic Parasitology 79, 7176.Google Scholar
Ross, JL et al. (2016) Survey of nematodes associated with terrestrial slugs in Norway. Journal of Helminthology 90, 583587.Google Scholar
Ross, JL et al. (2017) Angiostoma norvegicum n. sp. (Nematoda: Angiostomatidae) a parasite of arionid slugs in Norway. Systematic Parasitology 94, 5163.Google Scholar
Schneider, AF (1859) Über eine Nematodenlarve und gewisse Verscheidenheiten in den Geschlechtsorganen der Nematoden. Zeitschrift für wissenschaftliche Zoologie 10, 176178.Google Scholar
Seinhorst, JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4, 6769.Google Scholar
Singh, PR et al. (2018) Morphological and molecular characterisation of Pratylenchus rwandae n. sp. (Tylenchida: Pratylenchidae) associated with maize in Rwanda. Nematology 20, 781794.Google Scholar
Tan, L and Grewal, PS (2001a) Infection behavior of the rhabditid nematode Phasmarhabditis hermaphrodita to the grey garden slug Deroceras reticulatum. Journal of Parasitology 87, 13491354.Google Scholar
Tan, L and Grewal, PS (2001b) Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Applied and Environmental Microbiology 67, 50105016.Google Scholar
Tandingan De Ley, I et al. (2016) Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology 18, 175193.Google Scholar
Thomas, AK et al. (2010) A field guide to the slugs of Kentucky. Lexington, KY: University of Kentucky College of Agriculture, Agriculture Experiment Station Publication SR-103.Google Scholar
Vrain, TC et al. (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563573.Google Scholar
Wilson, MJ, Glen, DM and George, SK (1993) The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology 3, 503511.Google Scholar