Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T08:43:51.624Z Has data issue: false hasContentIssue false

The use of soy protein polymers as a release device for nematophagous fungi in the control of parasitic nematodes in ruminants

Published online by Cambridge University Press:  11 June 2013

M.F. Sagüés*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos AiresB7000GHG, Argentina Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
P. Purslow
Affiliation:
Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Canada
A.S. Fernández
Affiliation:
BioNem Research Centre, Guelph, Canada
L.E. Iglesias
Affiliation:
Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
L.A. Fusé
Affiliation:
Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
C.A. Saumell
Affiliation:
Área de Parasitología y Enfermedades Parasitarias, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
*
*Fax: +54 249 4439850 E-mail: federica@vet.unicen.edu.ar

Abstract

This trial was conducted to evaluate the predatory activity of Duddingtonia flagrans incorporated into soy protein-based polymers as a controlled-release device (CRD). The rate of fungal release from the polymers and time of residence of the CRD in the rumen of a cannulated sheep was also determined. After administration to the sheep, the CRD was extracted at weekly intervals over a month for observation of its physical structure and faeces were collected to observe the subsequent predatory activity of the fungus in Petri dishes with water-agar 2% and Panagrellus spp. as bait. The CRD slowly degraded in the rumen over 4 weeks and liberated D. flagrans into the faeces. The formulation of the soy protein-based polymers did not affect the predatory activity of the fungus. The study demonstrates that biodegradable soy protein polymers could potentially improve the use of nematophagous fungi for controlling nematode parasites of ruminants.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, J.V., Stephano, M.A. & Sampaio, W.M. (2000) Effects of temperature, mineral salt and passage through the gastrointestinal tract of calves on sodium alginate formulation of Arthrobotrys robusta, a nematode-trapping fungus. Revista Brasilera de Parasitología Veterinaria 9, 5559.Google Scholar
Caillard, R., Petit, A. & Subirade, M. (2009) Design and evaluation of succinylated soy protein tablets as delayed drug delivery systems. International Journal of Biological Macromolecules 45, 414420.Google Scholar
Casillas Aguilar, J.A., Mendoza de Gives, P., López-Arellano, M.E. & Liébano Hernández, E. (2008) Evaluation of multinutritional pellets containing Duddingtonia flagrans chlamydospore for the control of ovine haemonchosis. Annals of the New York Academy of Sciences 1149, 161163.Google Scholar
Cunningham, J.G. (1996) Fisiología veterinaria. Mexico, Editorial Interamericana, McGraw-Hill.Google Scholar
Githigia, S.M., Thamsborg, S.M., Larsen, M., Kyvsgaard, N.C. & Nansen, N.C. (1997) The preventive effect of the fungus Duddingtonia flagrans on trichostrongyle infections of lambs on pasture. International Journal of Parasitology 27, 931939.CrossRefGoogle ScholarPubMed
Larsen, M., Faedo, M., Waller, P.J. & Hennessy, D.R. (1998) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: studies with Duddingtonia flagrans. Veterinary Parasitology 76, 121128.CrossRefGoogle ScholarPubMed
Maltais, A., Remondetto, G.F., Gonzalez, R. & Subirade, M. (2005) Formation of soy protein isolate cold-set gels: protein and salt effects. Journal of Food Science 70, C67C73.Google Scholar
Maltais, A., Remondetto, G.E. & Subirade, M. (2009) Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocolloids 23, 16471653.CrossRefGoogle Scholar
Maltais, A., Remondetto, G.F. & Subirade, M. (2010) Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids 24, 518524.CrossRefGoogle Scholar
Ribeiro Braga, F., Araújo, J.V., Silva, A.R., Araujo, J.M., Carvalho, R.O., Tavela, A.O., Campos, A.K. & Carvalho, G.R. (2009) Biological control of horse cyathostomin (Nematoda: Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical southeastern Brazil. Veterinary Parasitology 163, 335340.CrossRefGoogle Scholar
Rosemberg, M. & Young, S.L. (1993) Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat-structure evaluation. Food Structure 12, 3141.Google Scholar
Sagüés, M.F. (2012) Control biológico de nematodos parásitos mediante hongos nematófagos: optimización de cultivos y su administración a través de polímeros de soja y bloques energéticos. PhD Thesis, Facultad de Ciencias Veterinarias. Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.Google Scholar
Sagüés, M.F., Fusé, L.A., Fernández, A.S., Iglesias, L.E., Moreno, F.C. & Saumell, C.A. (2011) Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes of sheep. Parasitology Research 109, 707713.Google Scholar
Sagüés, M.F., Saumell, C. & Fusé, L. (2012) Control biológico de nematodos parásitos mediante hongos nematófagos. Saarbrücken (Germany), Editorial Académica Española.Google Scholar
Song, F. & Zhang, L.M. (2009) Gelation modification of soy protein isolate by a naturally occurring cross linking agent and its potential biomedical application. Industrial Engineering Chemistry Research 48, 70777083.Google Scholar
Song, F., Zhang, L.M., Yang, C. & Yan, L. (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. International Journal of Pharmaceutics 373, 4147.Google Scholar
Vaz, C.M., van Doeveren, P.F.M., Reis, R.L. & Cunha, A.M. (2003) Soy matrix drug delivery systems obtained by melt-processing techniques. Biomacromolecules 6, 15201529.Google Scholar
Waller, P.J., Faedo, M. & Ellis, K. (2001a) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: towards the development of a fungal controlled release device. Veterinary Parasitology 102, 299308.Google Scholar
Waller, P.J., Knox, M.R. & Faedo, M. (2001b) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: feeding and block studies with Duddingtonia flagrans. Veterinary Parasitology 102, 321330.Google Scholar
Winzenburg, G., Schmidt, C., Fuchs, S. & Kissel, T. (2004) Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced Drug Delivery Reviews 56, 14531466.Google Scholar