Skip to main content Accessibility help

Three-dimensional printing as a tool in otolaryngology training: a systematic review

  • G Chen (a1), M Jiang (a1), J Coles-Black (a1) (a2), K Mansour (a3), J Chuen (a1) (a2) and D Amott (a4)...



Three-dimensional printing is a revolutionary technology that is disrupting the status quo in surgery. It has been rapidly adopted by otolaryngology as a tool in surgical simulation for high-risk, low-frequency procedures. This systematic review comprehensively evaluates the contemporary usage of three-dimensional printed otolaryngology simulators.


A systematic review of the literature was performed with narrative synthesis.


Twenty-two articles were identified for inclusion, describing models that span a range of surgical tasks (temporal bone dissection, airway procedures, functional endoscopic sinus surgery and endoscopic ear surgery). Thirty-six per cent of articles assessed construct validity (objective measures); the other 64 per cent only assessed face and content validity (subjective measures). Most studies demonstrated positive feedback and high confidence in the models’ value as additions to the curriculum.


Whilst further studies supported with objective metrics are merited, the role of three-dimensional printed otolaryngology simulators is poised to expand in surgical training given the enthusiastic reception from trainees and experts alike.


Corresponding author

Author for correspondence: Dr Jasamine Coles-Black, Department of Vascular Surgery, Austin Health, 145 Studley Road, Heidelberg3084, Victoria, Australia E-mail:


Hide All

Dr J Coles-Black takes responsibility for the integrity of the content of the paper



Hide All
1Zopf, DA, Hollister, SJ, Nelson, ME, Ohye, RG, Green, GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013;368:2043–5
2Dorrity, JA, Odland, R. 3D printing and preoperative planning in acute midface trauma. Otolaryngol Head Neck Surg 2017;157(1 suppl):P181–2
3Martelli, NPP, Serrano, CP, van den Brink, HPP, Pineau, JP, Prognon, PPP, Borget, IPP et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 2016;159:1485–500
4Shaharan, S, Neary, P. Evaluation of surgical training in the era of simulation. World J Gastrointest Endosc 2014;6:436–47
5Forgione, A, Guraya, SY. The cutting-edge training modalities and educational platforms for accredited surgical training: a systematic review. J Res Med Sci 2017;22:51
6Coles-Black, J, Chao, I, Chuen, J. Three-dimensional printing in medicine. Med J Aust 2017;207:102–3
7Da Cruz, MJ, Francis, HW. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development. J Laryngol Otol 2015;129(suppl 3):S23–9
8Hochman, JB, Rhodes, C, Wong, D, Kraut, J, Pisa, J, Unger, B. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. Laryngoscope 2015;125:2353–7
9Mowry, SE, Jammal, H, Myer, C, Solares, CA, Weinberger, P. A novel temporal bone simulation model using 3D printing techniques. Otol Neurotol 2015;36:1562–5
10Rose, AS, Kimbell, JS, Webster, CE, Harrysson, OL, Formeister, EJ, Buchman, CA. Multi-material 3D models for temporal bone surgical simulation. Ann Otol Rhinol Laryngol 2015;124:528–36
11Nguyen, Y, Mamelle, E, De Seta, D, Sterkers, O, Bernardeschi, D, Torres, R. Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching. Eur Arch Otorhinolaryngol 2017;274:2733–9
12Barber, SR, Kozin, ED, Dedmon, M, Lin, BM, Lee, K, Sinha, S et al. 3D-printed pediatric endoscopic ear surgery simulator for surgical training. Int J Pediatr Otorhinolaryngol 2016;90:113–18
13Monfared, A, Mitteramskogler, G, Gruber, S, Salisbury, JK Jr, Stampfl, J, Blevins, NH. High-fidelity, inexpensive surgical middle ear simulator. Otol Neurotol 2012;33:1573–7
14Ding, CY, Yi, XH, Jiang, CZ, Xu, H, Yan, XR, Zhang, YL et al. Development and validation of a multi-color model using 3-dimensional printing technology for endoscopic endonasal surgical training. Am J Transl Res 2019;11:1040–8
15Hsieh, TY, Cervenka, B, Dedhia, R, Strong, EB, Steele, T. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol Head Neck Surg 2018;144:574–9
16Yoshiyasu, Y, Chang, DR, Bunegin, L, Lin, RP, Aden, JK, Prihoda, TJ et al. Construct validity of a low-cost medium-fidelity endoscopic sinus surgery simulation model. Laryngoscope 2019;129:1505–9
17Alrasheed, AS, Nguyen, LHP, Mongeau, L, Funnell, WRJ, Tewfik, MA. Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int Forum Allergy Rhinol 2017;7:837–41
18Chang, DR, Lin, RP, Bowe, S, Bunegin, L, Weitzel, EK, McMains, KC et al. Fabrication and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope 2017;127:781–6
19Narayanan, V, Narayanan, P, Rajagopalan, R, Karuppiah, R, Rahman, ZA, Wormald, PJ et al. Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 2015;272:753–7
20Cote, V, Schwartz, M, Arbouin Vargas, JF, Canfarotta, M, Kavanagh, KR, Hamdan, U et al. 3-Dimensional printed haptic simulation model to teach incomplete cleft palate surgery in an international setting. Int J Pediatr Otorhinolaryngol 2018;113:292–7
21AlReefi, MA, Nguyen, LH, Mongeau, LG, Haq, BU, Boyanapalli, S, Hafeez, N et al. Development and validation of a septoplasty training model using 3-dimensional printing technology. Int Forum Allergy Rhinol 2017;7:399404
22Al-Ramahi, J, Luo, H, Fang, R, Chou, A, Jiang, J, Kille, T. Development of an innovative 3D printed rigid bronchoscopy training model. Ann Otol Rhinol Laryngol 2016;125:965–9
23Gauger, VT, Rooney, D, Kovatch, KJ, Richey, L, Powell, A, Berhe, H et al. A multidisciplinary international collaborative implementing low cost, high fidelity 3D printed airway models to enhance Ethiopian anesthesia resident emergency cricothyroidotomy skills. Int J Pediatr Otorhinolaryngol 2018;114:124–8
24Barber, SR, Kozin, ED, Naunheim, MR, Sethi, R, Remenschneider, AK, Deschler, DG. 3D-printed tracheoesophageal puncture and prosthesis placement simulator. Am J Otolaryngol 2018;39:3740
25Kavanagh, KR, Cote, V, Tsui, Y, Kudernatsch, S, Peterson, DR, Valdez, TA. Pediatric laryngeal simulator using 3D printed models: a novel technique. Laryngoscope 2017;127:E132–7
26Ainsworth, TA, Kobler, JB, Loan, GJ, Burns, JA. Simulation model for transcervical laryngeal injection providing real-time feedback. Ann Otol Rhinol Laryngol 2014;123:881–6
27Chari, DA, Chan, DK. Novel inexpensive method to improve surgical training in congenital aural atresiaplasty using 3D simulation software. Otolaryngol Head Neck Surg 2018;159(1 suppl):P307–8
28Ha, JF, Morrison, RJ, Green, GE, Zopf, DA. Computer-aided design and 3-dimensional printing for costal cartilage simulation of airway graft carving. Otolaryngol Head Neck Surg 2017;156:1044–7
29Suzuki, M, Ogawa, Y, Kawano, A, Hagiwara, A, Yamaguchi, H, Ono, H. Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 2004;124:400–2
30Kasbekar, A, Narasimhan, G, Lesser, T. The development of a new 3D printed temporal bone model and its comparison to other training models. J Laryngol Otol 2016;130(suppl 3):S187
31Kozin, ED, Barber, SR, Wong, K, Kiringoda, R, Kempfle, J, Remenschneider, A et al. 3D printed temporal bone coupled with surgical navigation. Otolaryngol Head Neck Surg 2017;157(1 suppl):P233
32Chan, HH, Siewerdsen, JH, Vescan, A, Daly, MJ, Prisman, E, Irish, JC. 3D rapid prototyping for otolaryngology-head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One 2015;10:e0136370
33Gallagher, AG, Ritter, EM, Satava, RM. Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surg Endosc 2003;17:1525–9
34Kostusiak, M, Hart, M, Barone, DG, Hofmann, R, Kirollos, R, Santarius, T et al. Methodological shortcomings in the literature evaluating the role and applications of 3D training for surgical trainees. Med Teach 2017;39:1168–73


Three-dimensional printing as a tool in otolaryngology training: a systematic review

  • G Chen (a1), M Jiang (a1), J Coles-Black (a1) (a2), K Mansour (a3), J Chuen (a1) (a2) and D Amott (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed