Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-02-23T08:05:03.984Z Has data issue: false hasContentIssue false

A systematic review and analysis of data reduction techniques for the CReSS smoking topography device

Published online by Cambridge University Press:  22 November 2013

Stefanie De Jesus*
University of Western Ontario, London, Ontario, Canada
Agnes Hsin
University of Toronto, Canada
Guy Faulkner
University of Toronto, Canada
Harry Prapavessis
University of Western Ontario, London, Ontario, Canada
Address for correspondence: Stefanie De Jesus, PhD (c), Exercise and Health Psychology Laboratory, University of Western Ontario, London, Ontario, CanadaN6A 5B9, E-mail:


Introduction: Characterising smoking behaviour in an objective and ecologically valid manner is integral to understanding health complications associated with tobacco use. Smoking topography (ST) provides a representation of the physical attributes of smoking. However, there is no clear guidance on ST data exclusion and reduction techniques and the impact of different techniques.

Methods: A search was conducted using MEDLINE, PubMed, and Scopus and limited to studies published between 2001‒2012. The search identified 23 studies using the CReSS device.

Results: Few studies reported data reduction (n = 9) and exclusion (n = 4) criteria. Four data reduction techniques emerged and were applied to an existing dataset (n = 193, Mage = 38.98, FTND = 5.19, mean 17.23 cigarettes/day). Using repeated measures ANOVA, there were significant (p < 0.05) differences among all techniques for puff volume, peak flow, puff duration and interpuff interval, which were attenuated upon controlling for puff count.

Conclusions: This review highlights the inconsistency in the literature regarding the disclosure of smoking topography data treatment and provides clear evidence that outcomes vary depending on the technique used. Greater transparency is needed and consideration should be given by researchers to the potential impact of methodological decisions on study findings.

Review Article
Copyright © The Author(s), published by Cambridge University Press on behalf of Australian Academic Press Pty Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ahijevych, K., Gillespie, J., Demirci, M., & Jagadeesh, J. (1996). Menthol and nonmenthol cigarettes and smoke exposure in Black and White women. Pharmacology, Biochemistry, and Behavior, 53 (2), 355360. Scholar
Ahijevych, K., & Parsley, L. A. (1999). Smoke constituent exposure and stage of change in black and white women cigarette smokers. Addictive Behaviors, 24 (1), 115120. Scholar
Ashare, R. L., Tang, K. Z., Mesaros, A. C., Blair, I. A., Leone, F. T., & Strasser, A. A. (2012). Effects of 21 days of varenicline versus placebo on smoking behaviors and urges among non-treatment seeking smokers. Journal of Psychopharmacology, 10, 13831390. doi: 10.1177/0269881112449397CrossRefGoogle Scholar
Attwood, A. S., O'Sullivan, H., Leonards, U., Mackintosh, B., & Munafò, M. R. (2008). Attentional bias training and cue reactivity in cigarette smokers. Addiction, 103 (11), 18751882. doi: 10.1111/j.1360-0443.2008.02335.x.Google Scholar
Aung, A. T., Pickworth, W. B., & Moolchan, E. T. (2004). History of marijuana use and tobacco smoking topography in tobacco-dependent adolescents. Addictive Behaviors, 29 (4), 699706. Scholar
Aveyard, P., & West, R. (July 7, 2007). Managing smoking cessation. British Medical Journal, 335 (7609), 3741. doi: 10.1136/bmj.39252.591806.47Google Scholar
Benowitz, N. L. (2001). Compensatory smoking of low-yield cigarettes. In: National Cancer Institute (ed.), Risks Associated with Smoking Cigarettes with Low Machine-measured Yields of Tar and Nicotine (pp. 3964). Bethesda, MD: US Department of Health and Human Services, National Institutes of Health, National Cancer Institute.Google Scholar
Blank, M. D., Disharoon, S., & Eissenberg, T. (2009). Comparison of methods for measurement of smoking behavior: Mouthpiece-based computerized devices versus direct observation. Nicotine & Tobacco Research, 11 (7), 896903. doi: 10.1093/ntr/ntp083Google Scholar
Blendy, J. A., Strasser, A., Walters, C. L., Perkins, K. A., Patterson, F., Berkowitz, R., . . . & Lerman, C. (2005). Reduced nicotine reward in obesity: cross-comparison in human and mouse. Psychopharmacology, 180 (2), 306315. doi: 10.1007/s00213-005-2167-9Google Scholar
Bowling, A. (September 2005). Mode of questionnaire administration can have serious effects on data quality. Journal of Public Health, 27, 281291. doi: 10.1093/pubmed/fdi031CrossRefGoogle ScholarPubMed
Collins, C. C., Lippmann, B. M., Lo, S. J., & Moolchan, E. T. (2008). Time spent with smoking parents and smoking topography in adolescents. Addictive Behaviors, 33 (12), 15941597. doi: 10.1016/j.addbeh.2008.07.003Google Scholar
Djordjevic, M. V., Hoffmann, D., & Hoffmann, I. (1997). Nicotine regulates smoking patterns. Preventive Medicine, 26 (4), 432440.Google Scholar
Djordjevic, M. V., Stellman, S. D., & Zang, E. (October 1999). Doses of nicotine and lung carcinogens delivered to cigarette smokers. Journal of the National Cancer Institute, 92, 106111. doi: 10.1093/jnci/92.2.106Google Scholar
Eissenberg, T., Adams, C., Riggins, E. C. III, & Likness, M. (1999). Smokers’ sex and the effects of tobacco cigarettes: subject-rated and physiological measures. Nicotine and Tobacco Research, 1 (4), 317324. doi: 10.1080/1462229050011441Google Scholar
Faulkner, G. E., Arbour-Nicitopoulous, K. P., & Hsin, A. (2010). Cutting down one puff at a time: The acute effects of exercise on smoking behaviour. Journal of Smoking Cessation, 5 (2), 130135. Scholar
Franken, F. H., Pickworth, W. B., Epstein, D. H., & Moolchan, E. T. (2006). Smoking rates and topography predict adolescent smoking cessation following treatment with nicotine replacement therapy. Cancer Epidemiology, Biomarkers and Prevention, 15 (1), 154157. doi: 10.1158/1055-9965.EPI-05-0167Google Scholar
Frederiksen, L. W., Miller, P. M., & Peterson, G. L. (1977). Topographical components of smoking behavior. Addictive Behaviors, 2, 5561.Google Scholar
Grainge, M. J., Shahab, L., Hammond, D., O'Connor, R. J., & McNeill, A. (2009). First cigarette on waking and time of day as predictors of puffing behaviour in UK adult smokers. Drug and Alcohol Dependence, 101 (3), 191195. doi: 10.1016/j.drugalcdep.2009.01.013Google Scholar
Hammond, D., Fong, G. T., Cummings, K. M., & Hyland, A. (2005). Smoking topography, brand switching, and nicotine delivery: results from an in vivo study. Cancer Epidemiology, Biomarkers and Prevention, 14 (6), 13701375. doi: 10.1158/1055-9965.EPI-04-0498Google Scholar
Hammond, D., Fong, G. T., Cummings, K. M., O'Connor, R. J., Giovino, G. A., & McNeill, A. (2006). Cigarette yields and human exposure: a comparison of alternative testing regimens. Cancer Epidemiology, Biomarkers and Prevention, 15 (8), 14951501. doi: 10.1158/1055-9965.EPI-06-0047Google Scholar
Hatsukami, D. K., Morgan, S. F., Pickens, R. W., & Champagne, S. E. (1990). Situational factors in cigarette smoking. Addictive Behaviors, 15 (1), 112.Google Scholar
Hogarth, L., Dickinson, A., & Duka, T. (2010). The associative basis of cue-elicited drug taking in humans. Psychopharmacology, 208 (3), 337351. doi: 10.1007/s00213-009-1735-9Google Scholar
Hovarth, I., Loukides, S., Wodehouse, T., Kharitonov, S. A., Cole, P. J., & Barnes, P. J. (October 1998). Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax, 53, 867870. doi: 10.1136/thx.53.10.867Google Scholar
Joumard, R., Chiron, M., Vidon, R., Maurin, M., & Rouzioux, J. M. (October 1981). Mathematical models of the uptake of carbon monoxide on hemoglobin at low carbon monoxide levels. Environmental Health Perspectives, 41, 277289.Google Scholar
June, K. M., Hammond, D., Sjödin, A., Li, Z., Romanoff, L., & O'Connor, R. J. (2011). Cigarette ignition propensity, smoking behavior, and toxicant exposure: A natural experiment in Canada. Tobacco Induced Diseases, 9 (13), 17. doi: 10.1186/1617-9625-9-13Google Scholar
June, K. M., Norton, K. J., Rees, V. W., & O'Connor, R. J. (2012). Influence of measurement setting and home smoking policy on smoking topography. Addictive Behaviors, 37 (1), 4246. doi: 10.1016/j.addbeh.2011.07.039Google Scholar
Kassel, J. D., Greenstein, J. E., Evatt, D. P., Wardle, M. C., Yates, M. C., & Veilleux, J. C. (2007). Smoking topography in response to denicotinized and high-yield nicotine cigarettes in adolescent smokers. Journal of Adolescent Health, 40 (1), 5460. Scholar
King, A., McNamara, P., Conrad, M., & Cao, D. (2009). Alcohol-induced increases in smoking behavior for nicotinized and denicotinized cigarettes in men and women. Psychopharmacology, 207 (1), 107117. doi: 10.1007/s00213-009-1639-9Google Scholar
Kolonen, S., Tuomisto, J., Puustinen, P., & Airaksinen, M. M. (1992). Effects of smoking abstinence and chain-smoking on puffing topography and diurnal nicotine exposure. Pharmacology Biochemistry and Behavior, 42: 321332.Google ScholarPubMed
Lee, E. M., Malson, J. L., Waters, A. J., Moolchan, E. T., & Pickworth, W. B. (October 2003). Smoking topography: Reliability and validity in dependent smokers. Nicotine and Tobacco Research, 5 (5), 673679. doi: 10.10801I462220031000158645Google Scholar
Lombardo, T., & Carreno, L. (1987). Relationship of type A behavior pattern in smokers to carbon monoxide exposure and smoking topography. Health Psychology, 6 (5), 445452.Google Scholar
Matsumoto, M., Inaba, Y., Yamaguchi, I., Endo, O., Hammond, D., & Uchiyama, S. (2013). Smoking topography and biomarkers of exposure among Japanese smokers: associations with cigarette emissions obtained using machine smoking protocols. Environmental Health and Preventive Medicine, 18 (2): 95103. doi: 10.1007/s12199-012-0293-7CrossRefGoogle ScholarPubMed
McClure, E. A., Stitzer, M. L., & Vandrey, R. (2012). Characterizing smoking topography of cannabis in heavy users. Psychopharmacology, 220 (2), 309318. doi: 10.1007/s00213-011-2480-4Google Scholar
McKee, S. A., Krishnan-Sarin, S., Shi, J., Mase, T., & O'Malley, S. S. (2006). Modeling the effect of alcohol on smoking lapse behavior. Psychopharmacology, 189 (2), 201210. doi: 10.1007/s00213-006-0551-8Google Scholar
McKee, S. A., Sinha, R., Weinberger, A. H., Sofuoglu, M., Harrison, E. L. R., Lavery, M., & Wanzer, J. (2011). Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. Journal of Psychopharmacology, 25 (4), 490502. Doi: 10.1177/0269881110376694CrossRefGoogle ScholarPubMed
Middleton, E. T., & Morice, A. H. (2000). Breath carbon monoxide as an indication of smoking habit. Chest, 117 (3), 758763.Google Scholar
Moolchan, E. T., Zimmerman, D., Sehnert, S. S., Zimmerman, D., Huestis, M. A., & Epstein, D. H. (2005) Recent marijuana blunt smoking impacts carbon monoxide as a measure of adolescent tobacco abstinence. Substance Use and Misuse, 40 (2), 231240.CrossRefGoogle ScholarPubMed
Moolchan, E. T., Parzynski, C. S., Jaszyna-Gasior, M., Collins, C. C., Leff, M. K., & Zimmerman, D. L. (2009). A link between adolescent nicotine metabolism and smoking topography. Cancer Epidemiology, Biomarkers and Prevention, 18 (5), 15781583. Doi: 10.1158/1055-9965.EPI-08-0592Google Scholar
Muhammad-Kah, R., Liang, Q., Frost-Pineda, K., Mendes, P. E., Roethig, H. J., & Sarkar, M. (2011). Factors affecting exposure to nicotine and carbon monoxide in adult cigarette smokers. Regulatory Toxicology and Pharmacology, 619 (1), 129136. Doi: 10.1016/j.yrtph.2011.07.003Google Scholar
O'Connor, R. J., Kozlowski, L. T., Hammond, D., Vance, T. T., Stitt, J. P., & Cummings, K. M. (2007). Digital image analysis of cigarette filter staining to estimate smoke exposure. Nicotine & Tobacco Research, 9 (8), 865871. doi: 10.1080/14622200701485026Google Scholar
O'Connor, R. J., Rees, V. W., Norton, K. J., Cummings, M., Connolly, G. N., & Alpert, H. R. (2010). Does switching to reduced ignition propensity cigarettes alter smoking behavior or exposure to tobacco smoke constituents? Nicotine & Tobacco Research, 12 (10), 10111018. doi: 10.1093/ntr/ntq139Google Scholar
Ossip-Klein, D. J., Martin, J. E., Lomax, B. D., Prue, D. M., & Davis, C. J. (1983). Assessment of smoking topography generalization across laboratory, clinical, and naturalistic settings. Addictive Behaviors, 8 (1), 1117.Google Scholar
Perkins, K. A., Karelitz, J. L., Giedgowd, G. E., & Conklin, C. A. (April 2012). The reliability of puff topography and subjective responses during the ad lib smoking of a single cigarette. Nicotine and Tobacco Research, 14 (4), 490494. Doi: 10.1093/ntr/ntr150Google Scholar
Rees, V. W., Wayne, G. F., & Connolly, G. N. (2008). Puffing style and human exposure minimally altered by switching to a carbon-filtered cigarette. Cancer Epidemiology, Biomarkers and Prevention, 17 (11), 29953003. doi: 10.1158/1055-9965.EPI-07-2533Google Scholar
Schneider, T. (2012). The effect of an acute bout of exercise on smoking topography. (Masters dissertation). Retrieved from: Scholar
Shahab, L., Hammond, D., O'Connor, R. J., Cummings, M. K., Borland, R., King, B., & McNeill, A. (May 2008). The reliability and validity of self-reported puffing behavior: Evidence from a cross-national study. Nicotine and Tobacco Research, 10 (5), 867874. doi: 10.1080/14622200802027156Google Scholar
Shahab, L., West, R., & McNeill, A. (2008). The feasibility of measuring puffing behaviour in roll-your-own cigarette smokers. Tobacco Control, 17 (Suppl I), i17–i23. doi: 10.1136/tc.2007.021824Google Scholar
Strasser, A. A., Pickworth, W. B., Patterson, F., & Lerman, C. (2004). Smoking topography predicts abstinence following treatment with nicotine replacement therapy. Cancer Epidemiology, Biomarkers and Prevention, 13 (11), 18001804.Google Scholar
Strasser, A. A., Malaiyandi, V., Hoffmann, E., Tyndale, R. F., & Lerman, C. (2007). An association of CYP2A6 genotype and smoking topography. Nicotine and Tobacco Research, 9 (4), 511518. doi: 10.1080114622200701239605Google Scholar
Sutton, S. R., Russell, M. A., Iyer, R., Feyerabend, C., and Saloojee, Y. (1982). Relationship between cigarette yields, puffing patterns, and smoke intake: Evidence for tar compensation? British Medical Journal, 285 (6342), 600603.Google Scholar
Tabachnick, B., & Fidell, L. (1996). Using Multivariate Statistics (3rd edition). New York: HarperCollins.Google Scholar
Tidey, J. W., Rohsenow, D. J., Kaplan, G. B., & Swift, R. M. (2005). Cigarette smoking topography in smokers with schizophrenia and matched non-psychiatric controls. Drug and Alcohol Dependence, 80 (2), 259265. Scholar
Tomlin, M. E., Pinney, S., Buncher, C. R., McKay, R., & Brown, M. K. (1998) The effect of the mode of questionnaire administration on workers’ responses to cigarette smoking questions. American Journal of Epidemiology, 147 (Suppl), 338.Google Scholar
Veilleux, J. C., Kassel, J. D., Heinz, A. J., Braun, A., Wardle, M. C., Greenstein, J., . . . & Conrad, M. (2011). Predictors and sequelae of smoking topography over the course of a single cigarette in adolescent light smokers. Journal of Adolescent Health, 48, 176181. doi: 10.1016/j.jadohealth.2010.06.015Google Scholar
Vesley, A., Takeuchi, A., & Rucker, J. (1999) Effect of ventilation on carbon monoxide clearance in humans [Abstract]. American Journal of Respiratory and Critical Care Medicine, 159: A767.Google Scholar
Williams, J. M., Gandhi, K. K., Lub, S., Kumara, S., Steinberg, M. L., Cottler, B., & Benowitz, N. L. (2011). Shorter interpuff interval is associated with higher nicotine intake in smokers with schizophrenia. Drug and Alcohol Dependence, 118 (2–3), 313319. doi: 10.1016/j.drugalcdep.2011.04.009Google Scholar
World Health Organization (2012). WHO report on Tobacco Free Initiative: Why tobacco is a public health priority. Retrieved from: Scholar
Zacny, J. P., Stitzer, M. L., Brown, F. J., Yingling, J. E., & Griffiths, R. R. (1987). Human cigarettes smoking: effects of puff and inhalation paramaters on smoke exposure. Journal of Pharmacology and Experimental Therapeutics, 240 (2), 554564.Google Scholar
Zayasu, K., Sekizawa, K., Okinaga, S., Yamaya, M., Ohrui, T., & Sasaki, H. (October 1997). Increased carbon monoxide in the exhaled air of asthmatic patients. American Journal of Respiratory and Critical Care Medicine, 156, 11401143. doi: 10.1164/ajrccm.156.4.96-08056Google Scholar
Zimmerman, D. M., Sehnert, S. S., Epstein, D. H., Pickworth, W. B., Robinson, M. L., & Moolchan, E. T. (2004). Smoking topography and trajectory of asthmatic adolescents requesting cessation treatment. Preventive Medicine, 39 (5), 940942. http://dx/ Scholar