Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-4z9h4 Total loading time: 0.211 Render date: 2021-04-12T20:23:57.912Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Lawvere–Tierney sheaves in Algebraic Set Theory

Published online by Cambridge University Press:  12 March 2014

S. Awodey
Affiliation:
Department of Philosophy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pa 15213, USA, E-mail: awodey@cmu.edu
N. Gambino
Affiliation:
Department of Computer Science, University of Leicester, University Road, Leicester Lei 7Rh, UK, E-mail: nicola.gambino@gmail.com
P. L. Lumsdaine
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pa 15213, USA, E-mail: plumsdai@andrew.cmu.edu
M. A. Warren
Affiliation:
Department of Philosophy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pa 15213, USA, E-mail: mwarren@andrew.cmu.edu

Abstract

We present a solution to the problem of denning a counterpart in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothendieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the existing topos-theoretic results.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Aczel, P. and Rathjen, M., Notes on constructive set theory, Technical Report 40, Mittag–Leffler Institut, The Swedish Royal Academy of Sciences, 2001.Google Scholar
[2]Awodey, S., Butz, C., Simpson, A., and Streicher, T., Relating topos theory and set theory via categories of classes, Technical Report CMU-PHIL-146, Department of Philosophy, Carnegie Mellon University, 2003.Google Scholar
[3]Awodey, S. and Warren, M. A., Predicative algebraic set theory, Theory and applications of categories, vol. 15 (2005), no. 1, pp. 139.Google Scholar
[4]van den Berg, B., Sheaves for predicative toposes, Archive for Mathematical Logic, to appear. ArXiv:math.L0/0507480vl, 2005.Google Scholar
[5]van den Berg, B. and Moerdijk, I., A unified approach to algebraic set theory, arXiv: 0710.3066vl, 2007, to appear in the Proceedings of the Logic Colloquium 2006.Google Scholar
[6]van den Berg, B., Aspects of predicative algebraic set theory I: Exact completions, Annals of Pure and Applied Logic, vol. 156 (2008), no. 1, pp. 123159.CrossRefGoogle Scholar
[7]Carboni, A., Some free constructions in readability and proof theory, Journal of Pure and Applied Algebra, vol. 103 (1995), pp. 117148.CrossRefGoogle Scholar
[8]Carboni, A. and Vitale, E. M., Regular and exact completions, Journal of Pure and Applied Algebra, vol. 125 (1998), pp. 79116.CrossRefGoogle Scholar
[9]Fourman, M. P., Sheaf models for set theory, Journal of Pure and Applied Algebra, vol. 19 (1980), pp. 91101.CrossRefGoogle Scholar
[10]Freyd, P., The axiom of choice, Journal of Pure and Applied Algebra, vol. 19 (1980), pp. 103125.CrossRefGoogle Scholar
[11]Gambino, N., Presheaf models for constructive set theories, From sets and types to topology and analysis (Crosilla, L. and Schuster, P., editors), Oxford University Press, 2005, pp. 6277.CrossRefGoogle Scholar
[12]Gambino, N., Heyting-valued interpretations for constructive set theory, Annals of Pure and Applied Logic, vol. 137 (2006), no. 1-3, pp. 164188.CrossRefGoogle Scholar
[13]Gambino, N., The associated sheaf functor theorem in algebraic set theory, Annals of Pure and Applied Logic, vol. 156 (2008), no. 1, pp. 6877.CrossRefGoogle Scholar
[14]Gambino, N. and Aczel, P., The generalized type-theoretic interpretation of constructive set theory, this Journal, vol. 71 (2006), no. 1, pp. 67103.Google Scholar
[15]Grayson, R. J., Forcing for intuitionistic systems without power-set, this Journal, vol. 48 (1983), no. 3, pp. 670682.Google Scholar
[16]Johnstone, P. T., Sketches of an elephant: A topos theory compendium, Oxford University Press, 2002.Google Scholar
[17]Joyal, A. and Moerdijk, I., Algebraic set theory, Cambridge University Press, 1995.CrossRefGoogle Scholar
[18]Lane, S. Mac and Moerdijk, I., Sheaves in geometry and logic: A first introduction to topos theory, Springer, 1992.CrossRefGoogle Scholar
[19]Lubarsky, R. S., Independence results around constructive ZF, Annals of Pure and Applied Logic, vol. 132 (2005), no. 2-3, pp. 209225.CrossRefGoogle Scholar
[20]Makkai, M. and Reyes, G., First-order categorical logic, Lecture Notes in Mathematics, vol. 611, Springer, 1977.CrossRefGoogle Scholar
[21]McCarty, D. C., Readability and recursive mathematics, Ph.D. thesis, University of Oxford, 1984.Google Scholar
[22]Moerduk, I. and Palmgren, E., Type theories, toposes, and constructive set theories: predicative aspects of AST, Annals of Pure and Applied Logic, vol. 114 (2002), pp. 155201.CrossRefGoogle Scholar
[23]Nordström, B., Petersson, K., and Smith, J. M., Martin-Löf type theory, Handbook of logic in computer science (Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E., editors), vol. 5, Oxford University Press, 2000.Google Scholar
[24]Rathjen, M., Realizability for constructive Zermelo–Fraenkel set theory, Logic Colloquium '03 (Väänänen, J. and Stoltenberg-Hansen, V., editors), Lecture Notes in Logic, vol. 24, Association for Symbolic Logic and AK Peters, 2006, pp. 282314.Google Scholar
[25]Simpson, A. K., Elementary axioms for categories of classes, 14th Symposium on Logic in Computer Science, IEEE Computer Society Press, 1999, pp. 7785.Google Scholar
[26]Warren, M. A., Coalgebras in a category of classes, Annals of Pure and Applied Logic, vol. 146 (2007), no. 1, pp. 6071.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lawvere–Tierney sheaves in Algebraic Set Theory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lawvere–Tierney sheaves in Algebraic Set Theory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lawvere–Tierney sheaves in Algebraic Set Theory
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *