Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T02:07:55.239Z Has data issue: false hasContentIssue false

On metric types that are definable in an o-minimal structure

Published online by Cambridge University Press:  12 March 2014

Guillaume Valette*
Affiliation:
Instytut Matematyki, Uniwersytet Jagielloński, UL. Reymonta 4, 30-059 Kraków, Poland, E-mail: Guillaume.Valette@im.uj.edu.pl

Abstract

In this paper we study the metric spaces that are definable in a polynomially bounded o-minimal structure. We prove that the family of metric spaces definable in a given polynomially bounded o-minimal structure is characterized by the valuation field Λ of the structure. In the last section we prove that the cardinality of this family is that of Λ. In particular these two results answer a conjecture given in [SS] about the countability of the metric types of analytic germs. The proof is a mixture of geometry and model theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BCR1]Bochnak, J., Coste, M., and Roy, M-F., Géométrie Algébrique Réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 12, Springer-Verlag, 1987.Google Scholar
[BCR2]Bochnak, J., Coste, M., and Roy, M-F., Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer-Verlag, 1998.CrossRefGoogle Scholar
[C]Coste, M., An introduction to o-minimal geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.Google Scholar
[vD]van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
[vD-M]van den Dries, L. and Miller, C., Geometric categories and o-minimal structures, Duke Mathematical Journal, vol. 84 (1996), no. 2, pp. 497540.CrossRefGoogle Scholar
[vD-S]van den Dries, L. and Speissegger, P., O-minimal preparation theorems, to appear.Google Scholar
[Ma]Marker, D., Model theory. An introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New York, 2002.Google Scholar
[M]Mostowski, T., Lipschitz equisingularity, Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 243, 1985, 46 pp.Google Scholar
[N]Nowak, K., A proof of the valuation property for polynomialy bounded o-minimal strucutres, preprint.Google Scholar
[P1]Parusiński, A., Lipschitz properties of semi-analytic sets, Université de Grenoble, Annates de l'Institut Fourier, vol. 38 (1988), no. 4, pp. 189213.CrossRefGoogle Scholar
[P2]Parusiński, A., Lipschitz stratification of subanalytic sets, Annates Scientifiques de l'Ecole Normale Supérieure. Quatrième Série, vol. 27 (1994), no. 6, pp. 661696.CrossRefGoogle Scholar
[SS]Siebenmann, L. and Sullivan, D., On complexes that are Lipschitz manifolds, Proceedings of the Georgia Topology Conference, Athens, Ga., 1977, Geometric topology, Academic Press, New York-London, 1979, pp. 503525.Google Scholar
[V1]Valette, G., A bi-Lipschitz version of Hardt's theorem, Comptes Rendu de l'Académic des Sciences, Paris, vol. 340 (2005), no. 12, pp. 895900.Google Scholar
[V2]Valette, G., Lipschitz triangulations, Illinois Journal of Mathematics, to appear.Google Scholar