No CrossRef data available.
Published online by Cambridge University Press: 08 June 2023
We introduce a category of filtered F-isocrystals and construct a symbol map from Milnor K-theory to the group of 1-extensions of filtered F-isocrystals. We show that our symbol map is compatible with the syntomic symbol map to the log syntomic cohomology by Kato and Tsuji. These are fundamental materials in our computations of syntomic regulators which we work in other papers.
 $p$
-adic hypergeometric functions and syntomic regulators, Journal de Théorie des Nombres de Bordeaux, To appear.Google Scholar
$p$
-adic hypergeometric functions and syntomic regulators, Journal de Théorie des Nombres de Bordeaux, To appear.Google Scholar $p$
-adic Beilinson conjecture for elliptic curves over
$p$
-adic Beilinson conjecture for elliptic curves over 
 $\mathbb{Q}$
, Res. Math. Sci. 10 (2023), Article 11.10.1007/s40687-023-00374-2CrossRefGoogle Scholar
$\mathbb{Q}$
, Res. Math. Sci. 10 (2023), Article 11.10.1007/s40687-023-00374-2CrossRefGoogle Scholar $p$
-adic polylogarithms, J. Reine Angew. Math. 529 (2000), 205–237.Google Scholar
$p$
-adic polylogarithms, J. Reine Angew. Math. 529 (2000), 205–237.Google Scholar $p$
-adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J. 113(2) (2002), 193–236.10.1215/S0012-7094-02-11321-0CrossRefGoogle Scholar
$p$
-adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J. 113(2) (2002), 193–236.10.1215/S0012-7094-02-11321-0CrossRefGoogle Scholar $p$
-adic absolute Hodge cohomology, Math. Z. 242 (2002), 443–480.10.1007/s002090100351CrossRefGoogle Scholar
$p$
-adic absolute Hodge cohomology, Math. Z. 242 (2002), 443–480.10.1007/s002090100351CrossRefGoogle Scholar $p$
, in Groupe de travail d’analyse ultramétrique, vol. 9, no. 3 (1981).Google Scholar
$p$
, in Groupe de travail d’analyse ultramétrique, vol. 9, no. 3 (1981).Google Scholar $p$
-adic integration I: Rigid syntomic regulators, Israel J. Math. 120 (2000), part B, 291–334.10.1007/BF02834843CrossRefGoogle Scholar
$p$
-adic integration I: Rigid syntomic regulators, Israel J. Math. 120 (2000), part B, 291–334.10.1007/BF02834843CrossRefGoogle Scholar $p$
-adic integration II:
$p$
-adic integration II: 
 ${K}_2$
 of curves, Israel J. Math. 120 (2000), part B, 335–359.10.1007/BF02834844CrossRefGoogle Scholar
${K}_2$
 of curves, Israel J. Math. 120 (2000), part B, 335–359.10.1007/BF02834844CrossRefGoogle Scholar $L$
-functions and Tamagawa numbers of motives, in P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. I. Manin and K. A. Ribet (eds.) The Grothendieck Festscherift I, Progress in Mathematics vol. 86 (Boston, Birkhäauser, 1990), 333–400.Google Scholar
$L$
-functions and Tamagawa numbers of motives, in P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. I. Manin and K. A. Ribet (eds.) The Grothendieck Festscherift I, Progress in Mathematics vol. 86 (Boston, Birkhäauser, 1990), 333–400.Google Scholar $L\;p$
-adiques, in Séminaire Bourbaki, vol. 41 (1998/99), Astérisque No. 266 (2000), Exp. No. 851, 3, 21–58.Google Scholar
$L\;p$
-adiques, in Séminaire Bourbaki, vol. 41 (1998/99), Astérisque No. 266 (2000), Exp. No. 851, 3, 21–58.Google Scholar $p$
-adic absolute Hodge cohomology and syntomic coefficients, I, Comment. Math. Helv. 93(1) (2018), 291–334.10.4171/cmh/430CrossRefGoogle Scholar
$p$
-adic absolute Hodge cohomology and syntomic coefficients, I, Comment. Math. Helv. 93(1) (2018), 291–334.10.4171/cmh/430CrossRefGoogle Scholar $p$
-adic cyles, Publ. Math. IHES vol. 37 (1969), 27–115.10.1007/BF02684886CrossRefGoogle Scholar
$p$
-adic cyles, Publ. Math. IHES vol. 37 (1969), 27–115.10.1007/BF02684886CrossRefGoogle Scholar $F$
-crystals, in Geometric Aspects of Dwork Theory vol. 1-2 (Walter de Gruyter, Berlin, 2004), 677–700.10.1515/9783110198133.2.677CrossRefGoogle Scholar
$F$
-crystals, in Geometric Aspects of Dwork Theory vol. 1-2 (Walter de Gruyter, Berlin, 2004), 677–700.10.1515/9783110198133.2.677CrossRefGoogle Scholar $p$
-adic periods and
$p$
-adic periods and 
 $p$
-adic etale cohomology, in Ribet, K. A. (ed.) Current Trends in Arithmetical Algebraic Geometry, Contemp. Math. vol. 67 (Amer. Math. Soc., Providence, 1987), 179–207.Google Scholar
$p$
-adic etale cohomology, in Ribet, K. A. (ed.) Current Trends in Arithmetical Algebraic Geometry, Contemp. Math. vol. 67 (Amer. Math. Soc., Providence, 1987), 179–207.Google Scholar $p$
-adic vanishing cycles (application of ideas of Fontaine-Messing), in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10 (Amsterdam, North-Holland, 1987), 207–251.Google Scholar
$p$
-adic vanishing cycles (application of ideas of Fontaine-Messing), in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10 (Amsterdam, North-Holland, 1987), 207–251.Google Scholar $p$
-adic point counting, J. Théor. Nombres Bordeaux 17(1) (2005), 169–180.10.5802/jtnb.484CrossRefGoogle Scholar
$p$
-adic point counting, J. Théor. Nombres Bordeaux 17(1) (2005), 169–180.10.5802/jtnb.484CrossRefGoogle Scholar $p$
-adic regulators for varieties over
$p$
-adic regulators for varieties over 
 $p$
-adic fields, Algebra Number Theory 10(8) (2016), 1695–1790. With appendices by Laurent Berger and Frédéric Déglise.10.2140/ant.2016.10.1695CrossRefGoogle Scholar
$p$
-adic fields, Algebra Number Theory 10(8) (2016), 1695–1790. With appendices by Laurent Berger and Frédéric Déglise.10.2140/ant.2016.10.1695CrossRefGoogle Scholar $L\;p$
-adiques des representations
$L\;p$
-adiques des representations 
 $p$
-adique, Astérisque 229 (1995).Google Scholar
$p$
-adique, Astérisque 229 (1995).Google Scholar $p$
-adic elliptic polylogarithms and arithmetic applications, thesis, 2008.Google Scholar
$p$
-adic elliptic polylogarithms and arithmetic applications, thesis, 2008.Google Scholar $p$
-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233–411.10.1007/s002220050330CrossRefGoogle Scholar
$p$
-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233–411.10.1007/s002220050330CrossRefGoogle Scholar $p$
-adic nearby cycles of log smooth families, Bull. Soc. Math. France. 128 (2000), 529–575.10.24033/bsmf.2381CrossRefGoogle Scholar
$p$
-adic nearby cycles of log smooth families, Bull. Soc. Math. France. 128 (2000), 529–575.10.24033/bsmf.2381CrossRefGoogle Scholar