Skip to main content
×
×
Home

SUR L’ÉTUDE DE L’ENTROPIE DES APPLICATIONS MÉROMORPHES

  • Henry de Thélin (a1)
Abstract

Nous construisons un espace adapté à l’étude de l’entropie des applications méromorphes en utilisant des limites projectives. Nous en déduisons un principe variationnel pour ces applications.

Nous construisons un espace adapté à l’étude de l’entropie des applications méromorphes en utilisant des limites projectives. Nous en déduisons un principe variationnel pour ces applications.

We construct a space which is useful in order to study the entropy of meromorphic maps by using projective limits. We deduce a variational principle for meromorphic maps.

Copyright
References
Hide All
1. Blanchard A., Sur les variétés analytiques complexes, Ann. Sci. Éc. Norm. Supér. 73 (1956), 157202.
2. Boucksom S., Favre C. et Jonsson M., Degree growth of meromorphic surface maps, Duke Math. J. 141 (2008), 519538.
3. Cantat S., Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), 299340.
4. Dang N.-B., Degrees of iterates of rational maps on normal projective varieties, preprint, 2017, https://arxiv.org/abs/1701.07760.
5. De Thélin H., Sur les exposants de Lyapounov des applications méromorphes, Invent. Math. 172 (2008), 89116.
6. De Thélin H. et Vigny G., Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. 122 (2010).
7. Dinh T.-C. et Sibony N., Regularization of currents and entropy, Ann. Sci. Éc. Norm. Supér. 37 (2004), 959971.
8. Dinh T.-C. et Sibony N., Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), 16371644.
9. Gromov M., On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217235.
10. Guedj V., Entropie topologique des applications méromorphes, Ergod. Th. & Dynam. Sys. 25 (2005), 18471855.
11. Hironaka H., Desingularization of complex-analytic varieties, Actes Congrès Intern. Math., Tome 2 (1970), 627631.
12. Hubbard J. H. et Papadopol P., Newton’s method applied to two quadratic equations in ℂ2 viewed as a global dynamical system, Mem. Amer. Math. Soc. 191 (2008), 891.
13. Katok A. et Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Volume 54 (Cambridge University Press, 1995).
14. Russakovskii A. et Shiffman B., Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), 897932.
15. Sibony N., Dynamique des applications rationnelles de ℙ k , Panor. Synthèses 8 (1999), 97185.
16. Truong T.-T., (Relative) dynamical degrees of rational maps over an algebraic closed field, preprint, 2015, https://arxiv.org/pdf/1501.01523.pdf.
17. Ye X., Topological entropy of the induced maps of the inverse limits with bonding maps, Topology Appl. 67 (1995), 113118.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 56 *
Loading metrics...

* Views captured on Cambridge Core between 2nd November 2017 - 22nd January 2018. This data will be updated every 24 hours.