Skip to main content
×
Home
    • Aa
    • Aa

ALL GROUPS ARE OUTER AUTOMORPHISM GROUPS OF SIMPLE GROUPS

  • MANFRED DROSTE (a1), MICHÈLE GIRAUDET (a2) and RÜDIGER GÖBEL (a3)
Abstract

It is shown that each group is the outer automorphism group of a simple group. Surprisingly, the proof is mainly based on the theory of ordered or relational structures and their symmetry groups. By a recent result of Droste and Shelah, any group is the outer automorphism group Out (Aut T) of the automorphism group Aut T of a doubly homogeneous chain (T, [les ]). However, Aut T is never simple. Following recent investigations on automorphism groups of circles, it is possible to turn (T, [les ]) into a circle C such that Out (Aut T) [bcong ] Out (Aut C). The unavoidable normal subgroups in Aut T evaporate in Aut C, which is now simple, and the result follows.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the London Mathematical Society
  • ISSN: 0024-6107
  • EISSN: 1469-7750
  • URL: /core/journals/journal-of-the-london-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×