Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T17:47:44.441Z Has data issue: false hasContentIssue false

Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach

Published online by Cambridge University Press:  09 February 2023

Katherine Laiton-Donato
Affiliation:
Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia CIST-Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta, Colombia Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
Camila Guzmán-Cardozo
Affiliation:
Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
Dioselina Peláez-Carvajal
Affiliation:
Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
Nadim J. Ajami
Affiliation:
Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
María-Cristina Navas
Affiliation:
Grupo de Gastrohepatología, Facultad de Medicina, SIU, Universidad de Antioquia, Medellín, Colombia
Gabriel Parra-Henao
Affiliation:
CIST-Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta, Colombia Subdirección de Innovación, Instituto Nacional de Salud, Bogotá, Colombia
José A. Usme-Ciro*
Affiliation:
CIST-Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta, Colombia
*
Author for correspondence: José A. Usme-Ciro, Email: jose.usmec@ucc.edu.co

Abstract

During the last two decades, the world has witnessed the emergence and re-emergence of arthropod-borne viruses, better known as arboviruses. The close contact between sylvatic, rural and peri-urban vector species and humans has been mainly determined by the environment-modifying human activity. The resulting interactions have led to multiple dead-end host infections and have allowed sylvatic arboviruses to eventually adapt to new vectors and hosts, contributing to the establishment of urban transmission cycles of some viruses with enormous epidemiologic impact. The metagenomic next-generation sequencing (NGS) approach has allowed obtaining unbiased sequence information of millions of DNA and RNA molecules from clinical and environmental samples. Robust bioinformatics tools have enabled the assembly of individual sequence reads into contigs and scaffolds partially or completely representing the genomes of the microorganisms and viruses being present in biological samples of clinical relevance. In this review, we describe the different ecological scenarios for the emergence of viral diseases, the virus adaptation process required for the establishment of a new transmission cycle and the usefulness of NGS and computational methods for the discovery and routine genomic surveillance of mosquito-borne viruses in their ecosystems.

Type
Review Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Nadim J. Ajami, Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA

References

Ajami, NJ, Wong, MC, Ross, MC, Lloyd, RE and Petrosino, JF (2018) Maximal viral information recovery from sequence data using VirMAP. Nature Communications 9, 3205. https://doi.org/10.1038/s41467-018-05658-8 CrossRefGoogle ScholarPubMed
Alencar, J, Ferreira de Mello, C, Brisola Marcondes, C, Érico Guimarães, A, Toma, HK, Queiroz Bastos, A, Olsson Freitas Silva, S and Lisboa Machado, S (2021) Natural infection and vertical transmission of Zika virus in sylvatic mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil. Tropical Medicine and Infectious Disease 6, 99. https://doi.org/10.3390/tropicalmed6020099 CrossRefGoogle ScholarPubMed
Althouse, BM, Guerbois, M, Cummings, DAT, Diop, OM, Faye, O, Faye, A, Diallo, D, Sadio, BD, Sow, A, Faye, O, Sall, AA, Diallo, M, Benefit, B, Simons, E, Watts, DM, Weaver, SC and Hanley, KA (2018) Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. Nature Communications 9, 1046. https://doi.org/10.1038/s41467-018-03332-7 CrossRefGoogle ScholarPubMed
Althouse, BM, Vasilakis, N, Sall, AA, Diallo, M, Weaver, SC and Hanley, KA (2016) Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLOS Neglected Tropical Diseases 10, e0005055. https://doi.org/10.1371/journal.pntd.0005055 CrossRefGoogle ScholarPubMed
Andrade de, MS, Campos, FS, Campos, AAS, Abreu, FVS, Melo, FL, Sevá da, AP, Cardoso da, JC, Dos Santos, E, Born, LC, Silva da, CMD, Müller, NFD, Oliveira de, CH, Silva da, AJJ, Simonini-Teixeira, D, Bernal-Valle, S, Mares-Guia, MAMM, Albuquerque, GR, Romano, APM, Franco, AC, Ribeiro, BM, Roehe, PM and Almeida de, MAB (2021) Real-time genomic surveillance during the 2021 re-emergence of the Yellow fever virus in Rio Grande do Sul State, Brazil. Viruses 13, 1976. https://doi.org/10.3390/v13101976 CrossRefGoogle Scholar
Attar, N (2016) ZIKA virus circulates in new regions. Nature Reviews Microbiology 14, 62. https://doi.org/10.1038/nrmicro.2015.28 CrossRefGoogle Scholar
Bahassi, EM and Stambrook, PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29, 303310. https://doi.org/10.1093/mutage/geu031 CrossRefGoogle ScholarPubMed
Barrett, ADT and Monath, TP (2003) Epidemiology and ecology of yellow fever virus. Advances in Virus Research 61, 291315. https://doi.org/10.1016/S0065-3527(03)61007-9 CrossRefGoogle ScholarPubMed
Batovska, J, Lynch, SE, Cogan, NOI, Brown, K, Darbro, JM, Kho, EA and Blacket, MJ (2018) Effective mosquito and arbovirus surveillance using metabarcoding. Molecular Ecology Resources 18, 3240. https://doi.org/10.1111/1755-0998.12682 CrossRefGoogle ScholarPubMed
Batson, J, Dudas, G, Haas-Stapleton, E, Kistler, AL, Li, LM, Logan, P, Ratnasiri, K and Retallack, H (2021) Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 10. https://doi.org/10.7554/eLife.68353 CrossRefGoogle ScholarPubMed
Bhatt, S, Gething, PW, Brady, OJ, Messina, JP, Farlow, AW, Moyes, CL, Drake, JM, Brownstein, JS, Hoen, AG, Sankoh, O, Myers, MF, George, DB, Jaenisch, T, William Wint, GR, Simmons, CP, Scott, TW, Farrar, JJ and Hay, SI (2013) The global distribution and burden of dengue. Nature 496, 504507. https://doi.org/10.1038/nature12060 CrossRefGoogle ScholarPubMed
Birnberg, L, Temmam, S, Aranda, C, Correa-Fiz, F, Talavera, S, Bigot, T, Eloit, M and Busquets, N (2020) Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses 12, 274. https://doi.org/10.3390/v12030274 CrossRefGoogle ScholarPubMed
Bohl, JA, Lay, S, Chea, S, Ahyong, V, Parker, DM, Gallagher, S, Fintzi, J, Man, S, Ponce, A, Sreng, S, Kong, D, Oliveira, F, Kalantar, K, Tan, M, Fahsbender, L, Sheu, J, Neff, N, Detweiler, AM, Yek, C, Ly, S, Sath, R, Huch, C, Kry, H, Leang, R, Huy, R, Lon, C, Tato, CM, DeRisi, JL and Manning, JE (2022) Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system. Proceedings of the National Academy of Sciences 119, e2115285119. https://doi.org/10.1073/pnas.2115285119 CrossRefGoogle ScholarPubMed
Bonizzoni, M, Dunn, WA, Campbell, CL, Olson, KE, Marinotti, O and James, AA (2012) Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE 7, e50512. https://doi.org/10.1371/journal.pone.0050512 CrossRefGoogle ScholarPubMed
Botti-Lodovico, Y, Nair, P, Nosamiefan, D, Stremlau, M, Schaffner, S, Agignoae, SV., Aiyepada, JO, Ajogbasile, FV., Akpede, GO, Alhasan, F, Andersen, KG, Asogun, DA, Ayodeji, OO, Badiane, AS, Barnes, K, Bauer, MR, Bell-Kareem, A, Benard, ME, Benevolence, EO, Blessing, O, Boehm, CK, Boisen, ML, Bond, NG, Branco, LM, Butts, MJ, Carter, A, Colubri, A, Deme, AB, DeRuff, KC, Diédhiou, Y, Edamhande, AP, Elhamoumi, S, Engel, EJ, Eromon, P, Fallah, M, Folarin, OA, Fry, B, Garry, R, Gaye, A, Gbakie, M, Gevao, SM, Gionet, G, Gladden-Young, A, Goba, A, Gomis, JF, Happi, AN, Houghton, M, Ihekwuazu, C, Iruolagbe, CO, Jackson, J, Jalloh, S, Johnson, J, Kanneh, L, Kayode, A, Kemball, M, Kingsley, OC, Koroma, V, Kotliar, D, Mehta, S, Metsky, HC, Michael, A, Mirhashemi, ME, Modjarrad, K, Momoh, M, Myhrvold, CA, Naregose, OG, Ndiaye, T, Ndiaye, M, Ndiaye, A, Normandin, E, Odia, I, Oguzie, JU, Okogbenin, SA, Okokhere, PO, Okolie, J, Olawoye, IB, Olumade, TJ, Oluniyi, PE, Omoregie, O, Park, DJ, Paye, MF, Petros, B, Philippakis, AA, Priscilla, A, Ricks, A, Rimoin, A, Sandi, JD, Schieffelin, JS, Schreiber, M, Seck, MC, Siddiqui, S, Siddle, K, Smither, AR, Sy, M, Sy, N, Tomkins-Tinch, CH, Tomori, O, Ugwu, C, Uwanibe, JN, Uyigue, EA, Victoria, DI, Vinzé, A, Vodzak, ME, Welch, N, Wurie, HI, Zoumarou, D, Grant, DS, Ndiaye, D, MacInnis, B, Sabeti, PC and Happi, C (2021) The origins and future of sentinel: an early-warning system for pandemic preemption and response. Viruses 13, 1605. https://doi.org/10.3390/v13081605 CrossRefGoogle ScholarPubMed
Braack, L, Gouveia De Almeida, AP, Cornel, AJ, Swanepoel, R and De Jager, C (2018) Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites and Vectors 11, 129. https://doi.org/10.1186/s13071-017-2559-9 CrossRefGoogle ScholarPubMed
Brinkmann, A, Nitsche, A and Kohl, C (2016) Viral metagenomics on blood-feeding arthropods as a tool for human disease surveillance. International Journal of Molecular Sciences 17, 1743. https://doi.org/10.3390/ijms17101743 CrossRefGoogle ScholarPubMed
Campos, SS, Fernandes, RS, dos Santos, AAC, de Miranda, RM, Telleria, EL, Ferreira-de-Brito, A, de Castro, MG, Failloux, A-B, Bonaldo, MC and Lourenço-de-Oliveira, R (2017) Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasites & Vectors 10, 605. https://doi.org/10.1186/s13071-017-2543-4 CrossRefGoogle ScholarPubMed
Cardoso da, JC, de Almeida, MAB, dos Santos, E, da Fonseca, DF, Sallum, MAM, Noll, CA, Monteiro, HA d. O, Cruz, ACR, Carvalho, VL, Pinto, EV., Castro, FC, Neto, JPN, Segura, MNO and Vasconcelos, PFC (2010) Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, Southern Brazil, 2008. Emerging Infectious Diseases 16, 19181924. https://doi.org/10.3201/eid1612.100608 CrossRefGoogle Scholar
Catenacci, LS, Ferreira, MS, Fernandes, D, Padda, H, Travassos-da-Rosa, ES, Deem, SL, Vasconcelos, PFC and Martins, LC (2021) Individual, household and environmental factors associated with arboviruses in rural human populations, Brazil. Zoonoses and Public Health 68, 203212. https://doi.org/10.1111/zph.12811 CrossRefGoogle ScholarPubMed
Charles, J, Tangudu, CS, Hurt, SL, Tumescheit, C, Firth, AE, Garcia-Rejon, JE, Machain-Williams, C and Blitvich, BJ (2018) Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. Journal of General Virology 99, 17291738. https://doi.org/10.1099/jgv.0.001165 CrossRefGoogle ScholarPubMed
Coffey, LL, Forrester, N, Tsetsarkin, K, Vasilakis, N and Weaver, SC (2013) Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiology 8, 155176. https://doi.org/10.2217/fmb.12.139 CrossRefGoogle ScholarPubMed
Conceição-Neto, N, Yinda, KC, Van Ranst, M and Matthijnssens, J (2018) NetoVIR: modular approach to customize sample preparation procedures for viral Metagenomics. In Methods in Molecular Biology. Vol. 1838. The Human Virome: Methods and Protocols. Springer Science+Business Media, LLC, part of Springer Nature, pp. 8595.CrossRefGoogle Scholar
Cunha dos, MP, Duarte-Neto, AN, Pour, SZ, Ortiz-Baez, AS, Černý, J, Pereira de, BBS, Braconi, CT, Ho, Y-L, Perondi, B, Sztajnbok, J, Alves, VAF, Dolhnikoff, M, Holmes, EC, Saldiva, PHN and Zanotto de, PMA (2019) Origin of the São Paulo Yellow Fever epidemic of 2017–2018 revealed through molecular epidemiological analysis of fatal cases. Scientific Reports 9, 20418. https://doi.org/10.1038/s41598-019-56650-1 CrossRefGoogle Scholar
De Ranitz, CM, Myers, RM, Varkey, MJ, Isaac, ZH and Carey, DE 1965 Clinical impressions of chikungunya in Vellore gained from study of adult patients. The Indian Journal of Medical Research 53, 756763.Google ScholarPubMed
de Vries, JJC, Brown, JR, Couto, N, Beer, M, Le Mercier, P, Sidorov, I, Papa, A, Fischer, N, Oude Munnink, BB, Rodriquez, C, Zaheri, M, Sayiner, A, Hönemann, M, Pérez-Cataluña, A, Carbo, EC, Bachofen, C, Kubacki, J, Schmitz, D, Tsioka, K, Matamoros, S, Höper, D, Hernandez, M, Puchhammer-Stöckl, E, Lebrand, A, Huber, M, Simmonds, P, Claas, ECJ and López-Labrador, FX (2021) Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. Journal of Clinical Virology 138, 104812. https://doi.org/10.1016/j.jcv.2021.104812 CrossRefGoogle ScholarPubMed
Dennehy, JJ, Friedenberg, NA, Holt, RD and Turner, PE (2006) Viral ecology and the maintenance of novel host use. The American Naturalist 167, 429439. https://doi.org/10.1086/499381 CrossRefGoogle ScholarPubMed
Dick, GWA (1952) Zika Virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene. https://doi.org/10.1016/0035-9203(52)90042-4 CrossRefGoogle ScholarPubMed
Domingo, C, Charrel, RN, Schmidt-Chanasit, J, Zeller, H and Reusken, C (2018) Yellow fever in the diagnostics laboratory. Emerging Microbes & Infections 7, 115. https://doi.org/10.1038/s41426-018-0128-8 CrossRefGoogle ScholarPubMed
Echeverry, DM, Giraldo, MI and Castaño, JC (2012) Prevalence of intestinal helminths in cats in Quindío, Colombia. Biomedica 32, 430436. https://doi.org/10.7705/biomedica.v32i3.439 Google ScholarPubMed
Edgerton, SV., Thongsripong, P, Wang, C, Montaya, M, Balmaseda, A, Harris, E and Bennett, SN (2021) Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. Infection, Genetics and Evolution 92, 104680. https://doi.org/10.1016/j.meegid.2020.104680 CrossRefGoogle ScholarPubMed
Ellwanger, JH and Chies, JAB (2021) Zoonotic spillover: understanding basic aspects for better prevention. Genetics and Molecular Biology 44. https://doi.org/10.1590/1678-4685-gmb-2020-0355 CrossRefGoogle ScholarPubMed
Erlanger, TE, Weiss, S, Keiser, J, Utzinger, J and Wiedenmayer, K (2009) Past, present, and future of Japanese encephalitis. Emerging Infectious Diseases 15, 17. https://doi.org/10.3201/eid1501.080311 CrossRefGoogle ScholarPubMed
Esposito, DLA and Fonseca da, BAL (2017) Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? The Brazilian Journal of Infectious Diseases 21, 540544. https://doi.org/10.1016/j.bjid.2017.06.002 CrossRefGoogle ScholarPubMed
European Centre for Disease Prevention and Control ECDC (2018) Zika transmission. https://ecdc.europa.eu/en/zika-virus-infection/threats-and-outbreaks/zika-transmission Google Scholar
Fauci, AS and Morens, DM (2016) Zika virus in the Americas — Yet another arbovirus threat. New England Journal of Medicine 374, 601604. https://doi.org/10.1056/NEJMp1600297 CrossRefGoogle ScholarPubMed
Figueiredo, LTM (2019) Human Urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Frontiers in Cellular and Infection Microbiology 9. https://doi.org/10.3389/fcimb.2019.00259 CrossRefGoogle ScholarPubMed
Forrester, NL, Wertheim, JO, Dugan, VG, Auguste, AJ, Lin, D, Adams, AP, Chen, R, Gorchakov, R, Leal, G, Estrada-Franco, JG, Pandya, J, Halpin, RA, Hari, K, Jain, R, Stockwell, TB, Das, SR, Wentworth, DE, Smith, MD, Kosakovsky Pond, SL and Weaver, SC (2017) Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLOS Neglected Tropical Diseases 11, e0005693. https://doi.org/10.1371/journal.pntd.0005693 CrossRefGoogle ScholarPubMed
French, RK and Holmes, EC (2020) An ecosystems perspective on virus evolution and emergence. Trends in Microbiology 28, 165175. https://doi.org/10.1016/j.tim.2019.10.010 CrossRefGoogle ScholarPubMed
Frierson, JG (2010) The yellow fever vaccine: a history. Yale Journal of Biology and Medicine 83, 7785.Google ScholarPubMed
Gao, X, Liu, H, Wang, H, Fu, S, Guo, Z and Liang, G (2013) Southernmost Asia is the source of Japanese Encephalitis Virus (Genotype 1) diversity from which the viruses disperse and evolve throughout Asia. PLoS Neglected Tropical Diseases 7, e2459. https://doi.org/10.1371/journal.pntd.0002459 CrossRefGoogle ScholarPubMed
Gardy, JL and Loman, NJ (2018) Towards a genomics-informed, real-time, global pathogen surveillance system. Nature Reviews Genetics 19, 920. https://doi.org/10.1038/nrg.2017.88 CrossRefGoogle ScholarPubMed
Geoghegan, JL and Holmes, EC (2018) The phylogenomics of evolving virus virulence. Nature Reviews Genetics 19, 756769. https://doi.org/10.1038/s41576-018-0055-5 CrossRefGoogle ScholarPubMed
Giovanetti, M, Faria, NR, Lourenço, J, Goes de Jesus, J, Xavier, J, Claro, IM, Kraemer, MUG, Fonseca, V, Dellicour, S, Thézé, J, da Silva Salles, F, Gräf, T, Silveira, PP, do Nascimento, VA, Costa de Souza, V, de Melo Iani, FC, Castilho-Martins, EA, Cruz, LN, Wallau, G, Fabri, A, Levy, F, Quick, J, de Azevedo, V, Aguiar, RS, de Oliveira, T, Bôtto de Menezes, C, da Costa Castilho, M, Terra, TM, Souza da Silva, M, Bispo de Filippis, AM, Luiz de Abreu, A, Oliveira, WK, Croda, J, Campelo de Albuquerque, CF, Nunes, MRT, Sabino, EC, Loman, N, Naveca, FG, Pybus, OG and Alcantara, LC (2020) Genomic and epidemiological surveillance of Zika virus in the Amazon region. Cell Reports 30, 22752283.e7. https://doi.org/10.1016/j.celrep.2020.01.085 CrossRefGoogle ScholarPubMed
Go, YY, Balasuriya, UBR and Lee, C (2014) Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clinical and Experimental Vaccine Research 3, 58. https://doi.org/10.7774/cevr.2014.3.1.58 CrossRefGoogle ScholarPubMed
Gould, E, Pettersson, J, Higgs, S, Charrel, R and de Lamballerie, X (2017) Emerging arboviruses: why today? One Health 4, 113. https://doi.org/10.1016/j.onehlt.2017.06.001 CrossRefGoogle ScholarPubMed
Gould, EA, de Lamballerie, X, Zanotto, PMdA and Holmes, EC (2003) Origins, evolution, and vector{plus 45 degree rule}host coadaptations within the Genus Flavivirus. Advances in Virus Research 59, 277314. https://doi.org/10.1016/S0065-3527(03)59008-X CrossRefGoogle Scholar
Grard, G, Fair, JN, Lee, D, Slikas, E, Steffen, I, Muyembe, J-J, Sittler, T, Veeraraghavan, N, Ruby, JG, Wang, C, Makuwa, M, Mulembakani, P, Tesh, RB, Mazet, J, Rimoin, AW, Taylor, T, Schneider, BS, Simmons, G, Delwart, E, Wolfe, ND, Chiu, CY and Leroy, EM (2012) A Novel Rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathogens 8, e1002924. https://doi.org/10.1371/journal.ppat.1002924 CrossRefGoogle ScholarPubMed
Grubaugh, ND, Ladner, JT, Lemey, P, Pybus, OG, Rambaut, A, Holmes, EC and Andersen, KG (2019) Tracking virus outbreaks in the twenty-first century. Nature Microbiology 4, 1019. https://doi.org/10.1038/s41564-018-0296-2 CrossRefGoogle ScholarPubMed
Grubaugh, ND, Sharma, S, Krajacich, BJ, Fakoli, LS III, Bolay, FK, Diclaro, JW II, Johnson, WE, Ebel, GD, Foy, BD and Brackney, DE (2015) Xenosurveillance: a Novel mosquito-based approach for examining the human-pathogen landscape. PLOS Neglected Tropical Diseases 9, e0003628. https://doi.org/10.1371/journal.pntd.0003628 CrossRefGoogle ScholarPubMed
Guth, S, Hanley, KA, Althouse, BM and Boots, M (2020) Ecological processes underlying the emergence of novel enzootic cycles: arboviruses in the neotropics as a case study. PLOS Neglected Tropical Diseases 14, e0008338. https://doi.org/10.1371/journal.pntd.0008338 CrossRefGoogle ScholarPubMed
Guzmán-Terán, C, Calderón-Rangel, A, Rodriguez-Morales, A and Mattar, S (2020) Venezuelan equine encephalitis virus: the problem is not over for tropical America. Annals of Clinical Microbiology and Antimicrobials 19, 19. https://doi.org/10.1186/s12941-020-00360-4 CrossRefGoogle Scholar
Hameed, M, Khan, S, Xu, J, Zhang, J, Wang, X, Di, D, Chen, Z, Naveed Anwar, M, Wahaab, A, Ma, X, Nawaz, M, Liu, K, Li, B, Shao, D, Qiu, Y, Wei, J and Ma, Z (2021) Detection of Japanese encephalitis virus in mosquitoes from Xinjiang during next-generation sequencing arboviral surveillance. Transboundary and Emerging Diseases 68, 467476. https://doi.org/10.1111/tbed.13697 CrossRefGoogle ScholarPubMed
Hayes, EB (2009) Zika virus outside Africa. Emerging Infectious Diseases 15, 13471350. https://doi.org/10.3201/eid1509.090442 CrossRefGoogle ScholarPubMed
Heath, CJ, Grossi-Soyster, EN, Ndenga, BA, Mutuku, FM, Sahoo, MK, Ngugi, HN, Mbakaya, JO, Siema, P, Kitron, U, Zahiri, N, Hortion, J, Waggoner, JJ, King, CH, Pinsky, BA and LaBeaud, AD (2020) Evidence of transovarial transmission of Chikungunya and Dengue viruses in field-caught mosquitoes in Kenya. PLOS Neglected Tropical Diseases 14, e0008362. https://doi.org/10.1371/journal.pntd.0008362 CrossRefGoogle ScholarPubMed
Hess, JF, Kohl, TA, Kotrová, M, Rönsch, K, Paprotka, T, Mohr, V, Hutzenlaub, T, Brüggemann, M, Zengerle, R, Niemann, S and Paust, N (2020) Library preparation for next generation sequencing: a review of automation strategies. Biotechnology Advances 41, 107537. https://doi.org/10.1016/j.biotechadv.2020.107537 CrossRefGoogle ScholarPubMed
Holmes, EC, Rambaut, A and Andersen, KG (2018) Pandemics: spend on surveillance, not prediction. Nature 558, 180182. https://doi.org/10.1038/d41586-018-05373-w CrossRefGoogle Scholar
Hoyos-López, R, Atencia-Pineda, MC and Gallego-Gómez, JC (2019) Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba, Colombia. Revista da Sociedade Brasileira de Medicina Tropical 52. https://doi.org/10.1590/0037-8682-0060-2019 CrossRefGoogle ScholarPubMed
Hoyos, J, Carrasquilla, MC, León, C, Montgomery, JM, Salyer, SJ, Komar, N and González, C (2021) Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest. Scientific Reports 11, 18656. https://doi.org/10.1038/s41598-021-98076-8 CrossRefGoogle Scholar
Huang, J, Wang, R, Gao, C, , Y, Cao, Z, Deng, S and Yue, C (2021) A case of tick-transmitted Q fever in Lishui, China diagnosed by next-generation sequencing. Journal of International Medical Research 49, 030006052110253. https://doi.org/10.1177/03000605211025398 CrossRefGoogle ScholarPubMed
Johnston, BL and Conly, JM (2000) West Nile virus – where did it come from and where might it go? Canadian Journal of Infectious Diseases 11, 175178. https://doi.org/10.1155/2000/856598 CrossRefGoogle Scholar
Kalantar, KL, Carvalho, T, de Bourcy, CFA, Dimitrov, B, Dingle, G, Egger, R, Han, J, Holmes, OB, Juan, Y-F, King, R, Kislyuk, A, Lin, MF, Mariano, M, Morse, T, Reynoso, L V, Cruz, DR, Sheu, J, Tang, J, Wang, J, Zhang, MA, Zhong, E, Ahyong, V, Lay, S, Chea, S, Bohl, JA, Manning, JE, Tato, CM and DeRisi, JL (2020) IDseq—an open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience 9. https://doi.org/10.1093/gigascience/giaa111 CrossRefGoogle ScholarPubMed
Kauffman, EB, Franke, MA, Wong, SJ and Kramer, LD (2010) Detection of West Nile virus. In Methods in Molecular Biology. Vol 665. Diagnostic Virology Protocols. Humana Press, pp. 383413.CrossRefGoogle Scholar
Kumar, B, Manuja, A, Gulati, B, Virmani, N and Tripathi, BN (2018) Zoonotic viral diseases of equines and their impact on human and animal health. The Open Virology Journal 12, 8098. https://doi.org/10.2174/1874357901812010080 CrossRefGoogle ScholarPubMed
Kuno, G and Chang, GJJ (2005) Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clinical Microbiological Reviews 18, 608637. https://doi.org/10.1128/CMR.18.4.608-637.2005 CrossRefGoogle ScholarPubMed
Laiton-Donato, K, Alvarez, DA, Peláez-Carvajal, D, Mercado, M, Ajami, NJ, Bosch, I and Usme-Ciro, JA (2019) Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virology Journal 16, 62. https://doi.org/10.1186/s12985-019-1170-4 CrossRefGoogle ScholarPubMed
Lee, GO, Vasco, L, Márquez, S, Zuniga-Moya, JC, Van Engen, A, Uruchima, J, Ponce, P, Cevallos, W, Trueba, G, Trostle, J, Berrocal, VJ, Morrison, AC, Cevallos, V, Mena, C, Coloma, J and Eisenberg, JNS (2021) A dengue outbreak in a rural community in Northern Coastal Ecuador: an analysis using unmanned aerial vehicle mapping. PLOS Neglected Tropical Diseases 15, e0009679. https://doi.org/10.1371/journal.pntd.0009679 CrossRefGoogle Scholar
Lewandowska, DW, Zagordi, O, Geissberger, F-D, Kufner, V, Schmutz, S, Böni, J, Metzner, KJ, Trkola, A and Huber, M (2017) Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples. Microbiome 5, 94. https://doi.org/10.1186/s40168-017-0317-z CrossRefGoogle ScholarPubMed
Li, SL, Acosta, AL, Hill, SC, Brady, OJ, de Almeida, MAB, Cardoso da, JC, Hamlet, A, Mucci, LF, Telles de Deus, J, Iani, FCM, Alexander, NS, Wint, GRW, Pybus, OG, Kraemer, MUG, Faria, NR and Messina, JP (2022) Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLOS Neglected Tropical Diseases 16, e0010019. https://doi.org/10.1371/journal.pntd.0010019 CrossRefGoogle ScholarPubMed
López-Labrador, FX, Brown, JR, Fischer, N, Harvala, H, Van Boheemen, S, Cinek, O, Sayiner, A, Madsen, TV, Auvinen, E, Kufner, V, Huber, M, Rodriguez, C, Jonges, M, Hönemann, M, Susi, P, Sousa, H, Klapper, PE, Pérez-Cataluňa, A, Hernandez, M, Molenkamp, R, der Hoek van, L, Schuurman, R, Couto, N, Leuzinger, K, Simmonds, P, Beer, M, Höper, D, Kamminga, S, Feltkamp, MCW, Rodríguez-Díaz, J, Keyaerts, E, Nielsen, XC, Puchhammer-Stöckl, E, Kroes, ACM, Buesa, J, Breuer, J, Claas, ECJ and de Vries, JJC (2021) Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. Journal of Clinical Virology 134, 104691. https://doi.org/10.1016/j.jcv.2020.104691 CrossRefGoogle ScholarPubMed
Lourenço-de-Oliveira, R and Failloux, AB (2017) High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Neglected Tropical Diseases 11, e0005698. https://doi.org/10.1371/journal.pntd.0005698 CrossRefGoogle ScholarPubMed
Lundberg, L, Carey, B and Kehn-Hall, K (2017) Venezuelan equine encephalitis virus Capsid—the clever caper. Viruses 9, 279. https://doi.org/10.3390/v9100279 CrossRefGoogle ScholarPubMed
MacNamara, F (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 48, 139145. https://doi.org/10.1016/0035-9203(54)90006-1 CrossRefGoogle ScholarPubMed
Moreira-Soto, A, Carneiro de, IO, Fischer, C, Feldmann, M, Kümmerer, BM, Silva, NS, Santos, UG, Souza de, BFCD, Liborio de, FA, Valença-Montenegro, MM, Laroque de, PO, da Fontoura, FR, Oliveira, AVD, Drosten, C, de Lamballerie, X, Franke, CR and Drexler, JF (2018) Limited evidence for infection of Urban and peri-urban nonhuman primates with Zika and Chikungunya viruses in Brazil. mSphere 3. https://doi.org/10.1128/msphere.00523-17 CrossRefGoogle Scholar
Moreira, J, Peixoto, TM, Siqueira, AM and Lamas, CC (2017) Sexually acquired Zika virus: a systematic review. Clinical Microbiology and Infection 23, 296305. https://doi.org/10.1016/j.cmi.2016.12.027 CrossRefGoogle ScholarPubMed
Morrison, TE (2014) Reemergence of Chikungunya virus. Journal of Virology 88, 1164411647. https://doi.org/10.1128/jvi.01432-14 CrossRefGoogle ScholarPubMed
Mowatt, L and Jackson, ST (2014) Chikungunya in the Caribbean: an epidemic in the making. Infectious Diseases and Therapy 3, 6368. https://doi.org/10.1007/s40121-014-0043-9 CrossRefGoogle Scholar
Musso, D (2015) Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21, 18871887. https://doi.org/10.3201/eid2110.151125 CrossRefGoogle ScholarPubMed
Musso, D, Roche, C, Robin, E, Nhan, T, Teissier, A and Cao-Lormeau, V-M (2015) Potential sexual transmission of Zika virus. Emerging Infectious Diseases 21, 359361. https://doi.org/10.3201/eid2102.141363 CrossRefGoogle ScholarPubMed
Nash, D, Mostashari, F, Fine, A, Miller, J, O’Leary, D, Murray, K, Huang, A, Rosenberg, A, Greenberg, A, Sherman, M, Wong, S, Campbell, GL, Roehrig, JT, Gubler, DJ, Shieh, W-J, Zaki, S, Smith, P and Layton, M (2001) The Outbreak of West Nile Virus Infection in the New York City Area in 1999. New England Journal of Medicine 344, 18071814. https://doi.org/10.1056/NEJM200106143442401 CrossRefGoogle ScholarPubMed
Oehler, E, Watrin, L, Larre, P, Leparc-Goffart, I, Lastãre, S, Valour, F, Baudouin, L, Mallet, HP, Musso, D and Ghawche, F (2014) Zika virus infection complicated by Guillain-Barré syndrome – case report, French Polynesia, December 2013. Eurosurveillance 19. https://doi.org/10.2807/1560-7917.es2014.19.9.20720 CrossRefGoogle ScholarPubMed
Pan American Health Organisation (2015) Epidemiological Alert: Neurological Syndrome, Congenital Malformations, and Zika virus Infection. Implications for Public Health in the Americas. Washington DC: Pan American Health Organization. https://iris.paho.org/handle/10665.2/50697 Google Scholar
Parra-Henao, G, Coelho, G, Escobar, JP, Gonzalvez, G and Bezerra, H (2021) Beyond traditional vector control and the need for strengthening integrated vector management in Latin America. Therapeutic Advances in Infectious Disease 8, 204993612199765. https://doi.org/10.1177/2049936121997655 CrossRefGoogle ScholarPubMed
Pereira dos Santos, T, Roiz, D, Santos de Abreu, FV, Luz, SLB, Santalucia, M, Jiolle, D, Santos Neves, MSA, Simard, F, Lourenço-de-Oliveira, R and Paupy, C (2018) Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Microbes & Infections 7, 18. https://doi.org/10.1038/s41426-018-0194-y CrossRefGoogle ScholarPubMed
Phan, TG, del Valle Mendoza, J, Sadeghi, M, Altan, E, Deng, X and Delwart, E (2018) Sera of Peruvians with fever of unknown origins include viral nucleic acids from non-vertebrate hosts. Virus Genes 54, 3340. https://doi.org/10.1007/s11262-017-1514-3 CrossRefGoogle ScholarPubMed
Piantadosi, A, Mukerji, SS, Ye, S, Leone, MJ, Freimark, LM, Park, D, Adams, G, Lemieux, J, Kanjilal, S, Solomon, IH, Ahmed, AA, Goldstein, R, Ganesh, V, Ostrem, B, Cummins, KC, Thon, JM, Kinsella, CM, Rosenberg, E, Frosch, MP, Goldberg, MB, Cho, TA and Sabeti, P (2021) Enhanced virus detection and metagenomic sequencing in patients with meningitis and encephalitis. mBio 12. https://doi.org/10.1128/mBio.01143-21 CrossRefGoogle ScholarPubMed
Quintão de, TSC, Slavov, SN, de Oliveira, PM, Bezerra dos, RS, Cassemiro, ÉM, Alves de, PPM, Gontijo, CC, Martins dos, FAP, Gurgel da, HC, Noronha, EF, Ramalho, WM, de Araújo, WN, Pereira, AL and Haddad, R (2022) Viral metagenomics in nasopharyngeal swabs of Brazilian patients negative for SARS-CoV-2 unveils the presence of Chikungunya virus infection. Journal of Infection 84, e24e26. https://doi.org/10.1016/j.jinf.2021.12.001 CrossRefGoogle Scholar
Reed, W, Carroll, J, Agramonte, A and Lazear, JW (2001) The etiology of Yellow fever — a preliminary note. Military Medicine 166, 2936. https://doi.org/10.1093/milmed/166.suppl_1.29 CrossRefGoogle ScholarPubMed
Reyes, A, Carbo, EC, Harinxma thoe Slooten van, JS, Kraakman, MEM, Sidorov, IA, Claas, ECJ, Kroes, ACM, Visser, LG and De, JJCV (2021) Viral metagenomic sequencing in a cohort of international travellers returning with febrile illness. Journal of Clinical Virology 143, 104940. https://doi.org/10.1016/j.jcv.2021.104940 CrossRefGoogle Scholar
Robinson, MC (1955) An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Transactions of the Royal Society of Tropical Medicine and Hygiene 49, 2832. https://doi.org/10.1016/0035-9203(55)90080-8 CrossRefGoogle Scholar
Rougeron, V, Sam, I-C, Caron, M, Nkoghe, D, Leroy, E and Roques, P (2015) Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk. Journal of Clinical Virology 64, 144152.CrossRefGoogle ScholarPubMed
Roux, S, Matthijnssens, J and Dutilh, BE (2021) Metagenomics in virology. Encyclopedia of Virology, 133140. https://doi.org/10.1016/B978-0-12-809633-8.20957-6 CrossRefGoogle Scholar
Russell, JA, Campos, B, Stone, J, Blosser, EM, Burkett-Cadena, N and Jacobs, JL (2018) Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: a field-forward Biosurveillance protocol. Scientific Reports 8, 5417. https://doi.org/10.1038/s41598-018-23641-7 CrossRefGoogle ScholarPubMed
Sacchetto, L, Silva, NIO, Rezende de, IM, Arruda, MS, Costa, TA, de Mello, ÉM, Oliveira, GFG, Alves, PA, de Mendonça, VE, Stumpp, RGAV, Prado, AIA, Paglia, AP, Perini, FA, Lacerda Nogueira, M, Kroon, EG, de Thoisy, B, Trindade de, GS and Drumond, BP (2020) Neighbor danger: Yellow fever virus epizootics in urban and urban-rural transition areas of Minas Gerais state, during 2017–2018 yellow fever outbreaks in Brazil. PLOS Neglected Tropical Diseases 14, e0008658. https://doi.org/10.1371/journal.pntd.0008658 CrossRefGoogle Scholar
Shi, M, Lin, XD, Tian, JH, Chen, LJ, Chen, X, Li, CX, Qin, XC, Li, J, Cao, JP, Eden, JS, Buchmann, J, Wang, W, Xu, J, Holmes, EC and Zhang, YZ (2016) Redefining the invertebrate RNA virosphere. Nature. https://doi.org/10.1038/nature20167 CrossRefGoogle ScholarPubMed
Simmonds, P, Adams, MJ, Benkő, M, Breitbart, M, Brister, JR, Carstens, EB, Davison, AJ, Delwart, E, Gorbalenya, AE, Harrach, B, Hull, R, King, AMQ, Koonin, E V., Krupovic, M, Kuhn, JH, Lefkowitz, EJ, Nibert, ML, Orton, R, Roossinck, MJ, Sabanadzovic, S, Sullivan, MB, Suttle, CA, Tesh, RB, van der Vlugt, RA, Varsani, A and Zerbini, FM (2017) Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology 15, 161168. https://doi.org/10.1038/nrmicro.2016.177 CrossRefGoogle ScholarPubMed
Solomon, T (2006) Control of Japanese encephalitis — within our grasp? New England Journal of Medicine 355, 869871. https://doi.org/10.1056/NEJMp058263 CrossRefGoogle ScholarPubMed
Soper, FL (1963) The elimination of urban Yellow fever in the Americas through the eradication of Aedes aegypti. American Journal of Public Health and the Nations Health 53, 716. https://doi.org/10.2105/AJPH.53.1.7 CrossRefGoogle ScholarPubMed
Tang, P and Chiu, C (2010) Metagenomics for the discovery of novel human viruses. Future Microbiology 5, 177189. https://doi.org/10.2217/fmb.09.120 CrossRefGoogle ScholarPubMed
Theiler, M and Smith, HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. Journal of Experimental Medicine 65, 787800. https://doi.org/10.1084/jem.65.6.787 CrossRefGoogle ScholarPubMed
Tsetsarkin, KA, Vanlandingham, DL, McGee, CE and Higgs, S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens 3, e201. https://doi.org/10.1371/journal.ppat.0030201 CrossRefGoogle ScholarPubMed
Valentine, MJ, Murdock, CC and Kelly, PJ (2019) Sylvatic cycles of arboviruses in non-human primates. Parasites & Vectors 12, 463. https://doi.org/10.1186/s13071-019-3732-0 CrossRefGoogle ScholarPubMed
Vasilakis, N, Cardosa, J, Hanley, KA, Holmes, EC and Weaver, SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. 9. https://doi.org/10.1038/nrmicro2595 CrossRefGoogle Scholar
Vasilakis, N, Tesh, RB, Popov, VL, Widen, SG, Wood, TG, Forrester, NL, Gonzalez, JP, Saluzzo, JF, Alkhovsky, S, Lam, SK, Mackenzie, JS and Walker, PJ (2019) Exploiting the legacy of the arbovirus hunters. Viruses 11, 471. https://doi.org/10.3390/v11050471 CrossRefGoogle ScholarPubMed
Ventura, C V, Maia, M, Bravo-Filho, V, Góis, AL and Belfort, R (2016) Zika virus in Brazil and macular atrophy in a child with microcephaly. The Lancet 387, 228. https://doi.org/10.1016/S0140-6736(16)00006-4 CrossRefGoogle Scholar
Vilsker, M, Moosa, Y, Nooij, S, Fonseca, V, Ghysens, Y, Dumon, K, Pauwels, R, Alcantara, LC, Vanden Eynden, E, Vandamme, A-M, Deforche, K and de Oliveira, T (2019) Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35, 871873. https://doi.org/10.1093/bioinformatics/bty695 CrossRefGoogle ScholarPubMed
Vorou, R (2016) Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. International Journal of Infectious Diseases 48, 8590. https://doi.org/10.1016/j.ijid.2016.05.014 CrossRefGoogle ScholarPubMed
Wang, E, Ni, H, Xu, R, Barrett, ADT, Watowich, SJ, Gubler, DJ and Weaver, SC (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. Journal of Virology 74, 32273234. https://doi.org/10.1128/JVI.74.7.3227-3234.2000 CrossRefGoogle ScholarPubMed
Weaver, SC (2014) Arrival of Chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Neglected Tropical Diseases 8, e2921. https://doi.org/10.1371/journal.pntd.0002921 CrossRefGoogle ScholarPubMed
Weaver, SC, Charlier, C, Vasilakis, N and Lecuit, M (2018) Zika, Chikungunya, and other emerging vector-borne viral diseases. Annual Review of Medicine 69, 395408. https://doi.org/10.1146/annurev-med-050715-105122 CrossRefGoogle ScholarPubMed
Weaver, SC and Reisen, WK (2010) Present and future arboviral threats. Antiviral Research 85, 328345. https://doi.org/10.1016/j.antiviral.2009.10.008 CrossRefGoogle ScholarPubMed
WHO/PAHO (2017) Epidemiological Update: Yellow Fever. Washington, DC: World Health Organization/Pan American Health Organization. https://iris.paho.org/handle/10665.2/50557 Google Scholar
WHO (2022) Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential, 2022–2032. Geneva: World Health Organization.Google Scholar
Wu, F, Zhao, S, Yu, B, Chen, Y-M, Wang, W, Song, Z-G, Hu, Y, Tao, Z-W, Tian, J-H, Pei, Y-Y, Yuan, M-L, Zhang, Y-L, Dai, F-H, Liu, Y, Wang, Q-M, Zheng, J-J, Xu, L, Holmes, EC and Zhang, Y-Z (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265269. https://doi.org/10.1038/s41586-020-2008-3 CrossRefGoogle ScholarPubMed
Xiao, P, Li, C, Zhang, Y, Han, J, Guo, X, Xie, L, Tian, M, Li, Y, Wang, M, Liu, H, Ren, J, Zhou, H, Lu, H and Jin, N (2018) Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Frontiers in Cellular and Infection Microbiology 8. https://doi.org/10.3389/fcimb.2018.00364 CrossRefGoogle ScholarPubMed
Xie, J and Zhu, Z (2021) A case report of pyogenic liver abscess caused by hypervirulent Klebsiella pneumoniae diagnosed by metagenomic next-generation sequencing. Journal of International Medical Research 49, 030006052110327. https://doi.org/10.1177/03000605211032793 CrossRefGoogle ScholarPubMed
Yang, Y, Garver, LS, Bingham, KM, Hang, J, Jochim, RC, Davidson, SA, Richardson, JH and Jarman, RG (2015) Feasibility of using the mosquito blood meal for rapid and efficient human and animal virus surveillance and discovery. The American Journal of Tropical Medicine and Hygiene 93, 13771382. https://doi.org/10.4269/ajtmh.15-0440 CrossRefGoogle ScholarPubMed
Ye, SH, Siddle, KJ, Park, DJ and Sabeti, PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178, 779794. https://doi.org/10.1016/j.cell.2019.07.010 CrossRefGoogle ScholarPubMed
Yozwiak, NL, Skewes-Cox, P, Stenglein, MD, Balmaseda, A, Harris, E and DeRisi, JL (2012) Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Neglected Tropical Diseases 6, e1485. https://doi.org/10.1371/journal.pntd.0001485 CrossRefGoogle ScholarPubMed
Zacks, MA and Paessler, S (2010) Encephalitic alphaviruses. Veterinary Microbiology 140, 281286. https://doi.org/10.1016/j.vetmic.2009.08.023 CrossRefGoogle ScholarPubMed
Zanluca, C, Melo de, VCA, Mosimann, ALP, Santos dos, GIV, Santos dos, CND and Luz, K (2015) First report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz 110, 569572. https://doi.org/10.1590/0074-02760150192 CrossRefGoogle ScholarPubMed
Zhang, Y-Z, Shi, M and Holmes, EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172, 11681172. https://doi.org/10.1016/j.cell.2018.02.043 CrossRefGoogle ScholarPubMed