Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T06:02:51.268Z Has data issue: false hasContentIssue false

Relationships of phosphorus concentration in reproductive organs with soil phosphorus availability for tropical rain-forest trees on Mount Kinabalu, Borneo

Published online by Cambridge University Press:  24 October 2018

Yuki Tsujii*
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606–8502, Japan
Kanehiro Kitayama
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606–8502, Japan
*Corresponding author. Email:


Bornean rain forests on phosphorus (P)-poor soils exhibit a high P-use efficiency in the production of reproductive organs (i.e. the inverse of P concentration in reproductive-organ litter). The mechanism underpinning this high P-use efficiency is not known, but is hypothesized to result from dilution of P in a given type of reproductive organ and/or a shift of the community composition of flower/fruit types with decreasing P availability. These hypotheses were tested using eight forests with different soil P availabilities on Mount Kinabalu, Borneo. Mean P concentration per forest by genus in inflorescences was significantly positively correlated with P availability, while that in seeds or pericarps was not significantly correlated. This trend was consistent across 21 genera that we analysed, suggesting that P concentration in seeds is maintained in exchange with the dilution of P in inflorescences. The composition of fruit types in tree community was estimated based on the relative abundances of genera in each forest. The relative abundance of capsulate species, which required less P in pericarps, tended to increase in tree community with decreasing P availability. Therefore, both mechanisms were involved in P-use efficiency. This work provides an insight into the reproductive adaptation of trees to P deficiency.

Research Article
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Present address: Center for Ecological Research, Kyoto University, 509-3 Hirano 2-Chome, Otsu, Shiga 520–2113, Japan



AIBA, S. & KITAYAMA, K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140:139157.Google Scholar
AIBA, S., KITAYAMA, K. & REPIN, R. 2002. Species composition and species-area relationships of trees in nine permanent plots in altitudinal sequences on different geological substrates of Mount Kinabalu. Sabah Parks Nature Journal 5:770.Google Scholar
ALMEIDA-NETO, M., CAMPASSI, F., GALETTI, M., JORDANO, P. & OLIVEIRA-FILHO, A. 2008. Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Global Ecology and Biogeography 17:503513.Google Scholar
APPANAH, S. 1985. General flowering in the climax rain forests of South-east Asia. Journal of Tropical Ecology 1:225240.Google Scholar
ASHMAN, T. 1994a. A dynamic perspective on the physiological cost of reproduction in plants. American Naturalist 144:300316.Google Scholar
ASHMAN, T. 1994b. Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. American Journal of Botany 433438.Google Scholar
ASHTON, P. S., GIVNISH, T. J. & APPANAH, S. 1988. Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. American Naturalist 132:4466.Google Scholar
ATKINSON, D. & DAVISON, A. W. 1971. The effects of phosphorus deficiency on the growth of Epilobium montanum L. New Phytologist 70:789797.Google Scholar
BURTON-JOHNSON, A., MACPHERSON, C. G. & HALL, R. 2017. Internal structure and emplacement mechanism of composite plutons: evidence from Mt Kinabalu, Borneo. Journal of the Geological Society 174:180191.Google Scholar
CANNON, C. H., CURRAN, L. M., MARSHALL, A. J. & LEINGTON, M. 2007. Long-term reproductive behaviour of woody plants across seven Bornean forest types in the Gunung Palung National Park (Indonesia): suprannual synchrony, temporal productivity and fruiting diversity. Ecology Letters 10:956969.Google Scholar
CHEN, S. C., CORNWELL, W. K., ZHANG, H. X. & MOLES, A. T. 2017. Plants show more flesh in the tropics: variation in fruit type along latitudinal and climatic gradients. Ecography 40:531538.Google Scholar
CHOI, D. L. T. 1996. Geology of Kinabalu. Pp. 1929 in Wong, K. M. & Phillipps, A. A. (eds). Kinabalu, summit of Borneo. (Revised and expanded edition). The Sabah Society & Sabah Parks, Sabah.Google Scholar
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M. M. C., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.Google Scholar
COLLENETTE, P. 1964. A short account of the geology and geological history of Mt Kinabalu. Proceedings of the Royal Society of London B: Biological Sciences 161:5663.Google Scholar
CORREA, D. F., ÁLVAREZ, E. & STEVENSON, P. R. 2015. Plant dispersal systems in Neotropical forests : availability of dispersal agents or availability of resources for constructing zoochorous fruits? Global Ecology and Biogeography 24:203214.Google Scholar
CREWS, T. E., KITAYAMA, K., FOWNES, J. H., RILEY, R. H., HERBERT, D. A., MUELLER-DOMBOIS, D. & VITOUSEK, P. M. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:14071424.Google Scholar
DIMANNO, N. M. & OSTERTAG, R. 2016. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient. Oecologia 180:245255.Google Scholar
ELSER, J. J., BRACKEN, M. E. S., CLELAND, E. E., GRUNER, D. S., HARPOLE, W. S., HILLEBRAND, H., NGAI, J. T., SEABLOOM, E.W., SHURIN, J. B. & SMITH, J. E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:11351142.Google Scholar
ESSER, H. J. 1997. A revision of Omalanthus (Euphorbiaceae) in Malesia. Blumea 42:421466.Google Scholar
FENNER, M. 1985. Seed ecology. Chapman & Hall, London. 151 pp.Google Scholar
FENNER, M. & THOMPSON, K. 2005. The ecology of seeds. Cambridge University Press, New York. 250 pp.Google Scholar
FYLLAS, N. M., PATIÑO, S., BAKER, T. R., BIELEFELD NARDOTO, G., MARTINELLI, L. A., QUESADA, C. A., PAIVA, R., SCHWARZ, M., HORNA, V., MERCADO, L. M., SANTOS, A., ARROYO, L., JIMÉNEZ, E. M., LUIZÃO, F. J., NEILL, D. A., SILVA, N., PRIETO, A., RUDAS, A., SILVIERA, M., VIEIRA, I. C. G., LOPEZ-GONZALEZ, G., MALHI, Y., PHILLIPS, O. L. & LLOYD, J. 2009. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:26772708.Google Scholar
GROOM, P. K. & LAMONT, B. B. 2010. Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant and Soil 334:6172.Google Scholar
HAWKESFORD, M., HORST, W., KICHEY, T., LAMBERS, H., SCHJOERRING, J., MØLLER, I. S. & WHITE, P. 2012. Functions of macronutrients. Pp. 135189 in Marschner, P. (ed.). Marschner's mineral nutrition of higher plants. Elsevier Science, Boston.Google Scholar
ICHIE, T. & NAKAGAWA, M. 2013. Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecological Research 28:151158.Google Scholar
ICHIE, T., KENTA, T., NAKAGAWA, M., SATO, K. & NAKASHIZUKA, T. 2005. Resource allocation to reproductive organs during masting in the tropical emergent tree, Dipterocarpus tempehes. Journal of Tropical Ecology 21:237241.Google Scholar
KENG, H. 1978. Orders and families of Malayan seed plants. University of Malaya Press, Kuala Lumpur. 437 pp.Google Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.Google Scholar
KITAYAMA, K. & AIBA, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.Google Scholar
KITAYAMA, K., MAJALAP-LEE, N. & AIBA, S. 2000. Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342349.Google Scholar
KITAYAMA, K., AIBA, S., TAKYU, M., MAJALAP, N. & WAGAI, R. 2004. Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems 7:259274.Google Scholar
KITAYAMA, K., TSUJII, Y., AOYAGI, R. & AIBA, S. 2015. Long-term C, N and P allocation to reproduction in Bornean tropical rain forests. Journal of Ecology 103:606615.Google Scholar
LAFRANKIE, J. 2010. Trees of tropical Asia: an illustrated guide to diversity. Black Tree Publications, Bacnotan. 748 pp.Google Scholar
LAMBERS, H., FINNEGAN, P. M., JOST, R., PLAXTON, W. C., SHANE, M. W. & STITT, M. 2015. Phosphorus nutrition in Proteaceae and beyond. Nature Plants 1:15109.Google Scholar
LAMONT, B. B. & GROOM, P. K. 2002. Green cotyledons of two Hakea species control seedling mass and morphology by supplying mineral nutrients rather than organic compounds. New Phytologist 153:101110.Google Scholar
MERCKX, V. S. F. T., HENDRIKS, K. P., BEENTJES, K. K., MENNES, C. B., BECKING, L. E., PEIJNENBURG, K. T. C. A., AFENDY, A., ARUMUGAM, N., DE BOER, H., BIUN, A., BUANG, M. M., CHEN, P-P., CHUNG, A. Y. C., DOW, R., FEIJEN, F. A. A, FEIJEN, H., FEIJEN-VAN SOEST, C., GEML, J., CEURTS, R., GRAVENDEEL, B., HOVENKAMP, P., IMBUN, P., IPOR, I., JANSSENS, S. B., JOCQUÉ, M. et al. 2015. Evolution of endemism on a young tropical mountain. Nature 524:347350.Google Scholar
MILBERG, P. & LAMONT, B. B. 1997. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist 137:665672.Google Scholar
RAVEN, P. H., EVERT, R. F. & EICHHORN, S. E. 2005. Biology of plants. (Seventh edition). Macmillan, New York. 875 pp.Google Scholar
RENNENBERG, H. & HERSCHBACH, C. 2013. Phosphorus nutrition of woody plants: many questions – few answers. Plant Biology 15:785788.Google Scholar
SAKAI, S. 2002. General flowering in lowland mixed dipterocarp forests of South‐east Asia. Biological Journal of the Linnean Society 75:233247.Google Scholar
SCHOT, A. M. 2004. Systematics of Aporosa (Euphorbiaceae). Blumea Supplement 17:1377.Google Scholar
SILVER, W. L. 1994. Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336343.Google Scholar
SLEUMER, H. 1955. Flacourtiaceae. Flora Malesiana-Series 1 Spermatophyta 5:1106.Google Scholar
SOEPADMO, E. & SAW, L. G. (eds.) 2000. Tree flora of Sabah and Sarawak, Vol. 3. Forest Research Institute Malaysia, Kuala Lumpur. 511 pp.Google Scholar
SOEPADMO, E. & WONG, K. M. (eds.) 1995. Tree flora of Sabah and Sarawak, Vol. 1. Forest Research Institute Malaysia, Kuala Lumpur. 513 pp.Google Scholar
SOEPADMO, E., WONG, K. M. & SAW, L. G. (eds) 1996. Tree flora of Sabah and Sarawak, Vol. 2. Forest Research Institute Malaysia, Kuala Lumpur. 443 pp.Google Scholar
SOEPADMO, E., SAW, L. G. & CHUNG, R. C. K. (eds) 2002. Tree flora of Sabah and Sarawak, Vol. 4. Forest Research Institute Malaysia, Kuala Lumpur. 388 pp.Google Scholar
SOEPADMO, E., SAW, L. G. & CHUNG, R. C. K. (eds) 2004. Tree flora of Sabah and Sarawak, Vol. 5. Forest Research Institute Malaysia, Kuala Lumpur. 528 pp.Google Scholar
SOEPADMO, E., SAW, L. G., CHUNG, R. C. K. & KIEW, R. (eds) 2007. Tree flora of Sabah and Sarawak, Vol. 6. Forest Research Institute Malaysia, Kuala Lumpur. 335 pp.Google Scholar
SOEPADMO, E., SAW, L. G., CHUNG, R. C. K. & KIEW, R. (eds) 2011. Tree flora of Sabah and Sarawak, Vol. 7. Forest Research Institute Malaysia, Kuala Lumpur. 450 pp.Google Scholar
SOEPADMO, E., SAW, L. G., CHUNG, R. C. K. & KIEW, R. (eds) 2014. Tree flora of Sabah and Sarawak, Vol. 8. Forest Research Institute Malaysia, Kuala Lumpur. 248 pp.Google Scholar
STAPF, O. 1894. II. On the Flora of Mount Kinabalu, in North Borneo. Transactions of the Linnean Society of London. 2nd Series. Botany 4:69263.Google Scholar
TAKYU, M., AIBA, S. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology 159: 3549.Google Scholar
THOMSON, C. J. & BOLGER, T. P. 1993. Effects of seed phosphorus concentration on the emergence and growth of subterranean clover (Trifolium subterraneum). Pp. 353356 in Baroow, N. J. (ed.). Plant nutrition – from genetic engineering to field practice. Springer, Perth.Google Scholar
VANDAMME, E., PYPERS, P., SMOLDERS, E. & MERCKX, R. 2016. Seed weight affects shoot and root growth among and within soybean genotypes beyond the seedling stage: implications for low P tolerance screening. Plant and Soil 401:6578.Google Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.Google Scholar
VITOUSEK, P. M., PORDER, S., HOULTON, B. Z. & CHADWICK, O. A. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20:515.Google Scholar
WAGAI, R., MAYER, L. M., KITAYAMA, K. & KNICKER, H. 2008. Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach. Geoderma 147:2333.Google Scholar
WALKER, T. W. & SYERS, J. K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:119.Google Scholar
WHITE, P. J. & VENEKLAAS, E. J. 2012. Nature and nurture: the importance of seed phosphorus content. Plant and Soil 357:18.Google Scholar
WITKOWSKI, E. T. F. 1990. Nutrient limitation of inflorescence and seed production in Leucospermum parile (Proteaceae) in the Cape fynbos. Journal of Applied Ecology 27:148158.Google Scholar
WITKOWSKI, E. T. F. & LAMONT, B. B. 1996. Disproportionate allocation of mineral nutrients and carbon between vegetative and reproductive structures in Banksia hookeriana. Oecologia 105: 3842.Google Scholar
YANG, X., POST, W. M., THORNTON, P. E. & JAIN, A. 2013. The distribution of soil phosphorus for global biogeochemical modelling. Biogeosciences 10:25252537.Google Scholar