Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T16:35:23.448Z Has data issue: false hasContentIssue false

Attack rates on artificial caterpillars in urban areas are higher than in suburban areas in Colombia

Published online by Cambridge University Press:  18 April 2023

Jefferson Cupitra-Rodríguez*
Affiliation:
Biology Department, Faculty of Exact and Natural Sciences, Universidad del Valle, Cali, Colombia
Lorena Cruz-Bernate
Affiliation:
Biology Department, Faculty of Exact and Natural Sciences, Universidad del Valle, Cali, Colombia
James Montoya-Lerma
Affiliation:
Biology Department, Faculty of Exact and Natural Sciences, Universidad del Valle, Cali, Colombia
*
Author for correspondence: Jefferson Cupitra-Rodríguez. Email: jefferson.cupitra@correounivalle.edu.co

Abstract

Growing urban expansion can alter ecological processes within trophic networks. Predation on herbivores is known to vary with the size of the area covered by vegetation, successional stage, altitude and predator community structure; however there are gaps in understanding how this occurs in urban and suburban environments. The purpose of this study was to determine whether predation pressure on artificial models of caterpillars varied with the degree of urbanisation and type of substrate. Artificial caterpillars were placed on two types of substrates (leaf vs. stem) in two areas of the city (urban vs. suburban). Total predation was measured as the number of models with evidence of attack by predators, with the predation rate estimated on a weekly basis. Predation was affected by the degree of urbanisation, being higher in urban ( = 9.88%; SD = 4.09%, n = 8) than suburban areas ( = 5.75%, SD = 4.21%, n = 8). Attack marks were observed in 23.8% (n = 125) of artificial caterpillars. The weekly predation rate on leaves ( = 9.63%, SD = 5.95%, n = 8) was higher than that on stems ( = 6%, SD = 4.2%, n = 8). These results suggest that the incidence of predation might vary with the degree of urbanisation and by the type of substrate on which prey organisms are found.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, AA (1998) Leaf damage and associated cues induce aggressive ant recruitment in a neotropical ant-plant. Ecology 79, 21002112. https://doi.org/10.1890/0012-9658(1998)079[2100:LDAACI]2.0.CO;2 CrossRefGoogle Scholar
Alarcon, A and Montlleó, M (2010) Teoría ecológica de las ciudades criterios de sostenibilidad para un modelo urbanístico alternativo. In Herce, M (ed), Infraestructuras y medio ambiente 1. urbanismo, territorio y redes de servicios. Barcelona, Spain: Editorial UOC, pp. 1368.Google Scholar
Aslam, M, Nedvěd, O and Sam, K (2020) Attacks by predators on artificial cryptic and aposematic insect larvae. Entomologia Experimentalis et Applicata 168, 184190. https://doi.org/10.1111/eea.12877 CrossRefGoogle Scholar
Atlegrim, O (1992) Mechanisms regulating bird predation on a herbivorous Larva guild in boreal coniferous forests. Ecography 15, 1924. https://doi.org/10.1111/j.1600-0587.1992.tb00003.x CrossRefGoogle Scholar
Barton, AM (1986) Spatial variation in the effect of ants on extrafloral nectary plant. Ecology 67, 495504. https://doi.org/10.2307/1938592 CrossRefGoogle Scholar
Beltran, W and Wunderle, JM (2013) Determinants of tree species preference for foraging by insectivorous birds in a novel Prosopis–Leucaena woodland in Puerto Rico: the role of foliage palatability. Biodiversity and Conservation 22, 20712089. https://doi.org/10.1007/s10531-013-0529-x CrossRefGoogle Scholar
Bustamante, R and Grez, AA (1995) Consecuencias ecológicas de la fragmentación de los bosques nativos. Ambiente y Desarrollo 11, 5863.Google Scholar
Cagnolo, L and Valladares, G (2011) Fragmentación del hábitat y desensamble de redes tróficas. Ecosistemas 20, 6878.Google Scholar
Caicedo-Argüelles, AP and Cruz-Bernate, L (2014) Daily activities and habitat use of the yellow warbler (Setophaga petechia) and the red piranga (Piranga rubra) in an urban green area of Cali, Colombia. Ornitología Neotropical 25, 247260.Google Scholar
Cárdenas-Henao, M, Londoño-Lemos, V, Llano-Almario, M, González-Colorado, AM, Rivera-Hernández, KL, Vargas-Figueroa, JA, Duque-Palacio, OL, Torres-González, AM, Jiménez-Taquinas, AC and Moreno-Cavazos, MP (2015) Fenología de cuatro especies arbóreas de bosque seco tropical en el Jardín Botánico Universitario, Universidad del Valle (Cali), Colombia. Actualidades Biológicas 37, 121130. https://doi.org/10.17533/udea.acbi.v37n103a01 CrossRefGoogle Scholar
Carpenter, SR, Mooney, HA, Agard, J, Capistrano, D, DeFries, RS, Diaz, S, Dietz, T, Duraiappah, AK, Oteng-Yeboah, A, Pereira, HM, Perrings, C, Reid, WV, Sarukhan, J, Scholes, RJ and Whyte, A (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proceedings of the National Academy of Sciences 106, 13051312. https://doi.org/10.1073/pnas.0808772106):1305-12 CrossRefGoogle ScholarPubMed
Colwell, RK (2016) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. User’s Guide and application. http://viceroy.colorado.edu/estimates/EstimateSPages/AboutEstimateS.htm Google Scholar
Del Hoyo, J, Elliott, A and Christie, D (1996) Handbook of the Birds of the World. Cerdanyola del Vallès, Spain: Lynx Edicions.Google Scholar
Desaegher, J, Nadot, S, Machon, N and Colas, B (2019) How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities?. Ecology and evolution 9, 99779989. https://doi.org/10.1002/ece3.5539 CrossRefGoogle ScholarPubMed
Didham, RK, Ghazoul, J, Stork, NE and Davis, AJ (1996) Insects in fragmented forests: a functional approach. Trends in Ecology & Evolution 11, 255260.CrossRefGoogle ScholarPubMed
Eötvös, CB, Lövei, GL and Magura, T (2020) Predation pressure on sentinel insect prey along a riverside urbanization gradient in hungary. Insects 11, 97. https://doi.org/10.3390/insects11020097 CrossRefGoogle ScholarPubMed
Eötvös, CB, Magura, T and Lövei, GL (2018) A meta-analysis indicates reduced predation pressure with increasing urbanization. Landscape and Urban Planning 180, 5459. https://doi.org/10.1016/j.landurbplan.2018.08.010 CrossRefGoogle Scholar
Espinal, LS (1968) Visión ecológica del Departamento del Valle del Cauca. Cali, Colombia: Universidad del Valle.Google Scholar
Feeny, P, Blau, WS and Kareiva, PM (1985) Larval growth and survivorship of the Black Swallowtail butterfly in central New York. Ecological Monographs 55, 167187. https://doi.org/10.2307/1942556 CrossRefGoogle Scholar
Ferrante, M, Barone, G, Kiss, M, Bozóné-Borbáth, E and Lövei, GL (2017a) Ground-level predation on artificial caterpillars indicates no enemy-free time for lepidopteran larvae. Community Ecology 18, 280286. https://doi.org/10.1556/168.2017.18.3.6 CrossRefGoogle Scholar
Ferrante, M, Barone, G and Lövei, GL (2017b) The carabid Pterostichus melanarius uses chemical cues for opportunistic predation and saprophagy but not for finding healthy prey. BioControl 62, 741747. https://doi.org/10.1007/s10526-017-9829-5 CrossRefGoogle Scholar
Ferrante, M, Lo Cacciato, A and Lovei, GL (2014) Quantifying predation pressure along an urbanization gradient in Denmark using artificial caterpillars. European Journal of Entomology 111, 649654. https://doi.org/10.14411/eje.2014.082 CrossRefGoogle Scholar
Ferrante, M, Lövei, GL, Magagnoli, S, Minarcikova, L, Tomescu, EL, Burgio, G, Cagan, L and Ichi, MC (2019) Predation pressure in maize across Europe and in Argentina: an intercontinental comparison. Insect Science 26, 545554. https://doi.org/10.1111/1744-7917.12550 CrossRefGoogle ScholarPubMed
Ferrante, M, Möller, D, Möller, G, Menares, E, Lubin, Y and Segoli, M (2021) Invertebrate and vertebrate predation rates in a hyperarid ecosystem following an oil spill. Ecology and evolution 11, 1215312160. https://doi.org/10.1002/ece3.7978 CrossRefGoogle Scholar
Ferrante, M, Nunes, R, Lamelas-López, L, Lövei, GL and Borges, PAV (2022) A novel morphological phenotype does not ensure reduced biotic resistance on an oceanic island. Biological Invasions, 111. https://doi.org/10.1007/s10530-021-02686-2 Google Scholar
Fischer, JD, Cleeton, SH, Lyons, TP and Miller, JR (2012) Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. BioScience 62, 809818. https://doi.org/10.1525/bio.2012.62.9.6 CrossRefGoogle Scholar
Frey, D, Vega, K, Zellweger, F, Ghazoul, J, Hansen, D and Moretti, M (2018) Predation risk shaped by habitat and landscape complexity in urban environments. Journal of Applied Ecology 55, 23432353. https://doi.org/10.1111/1365-2664.13189 CrossRefGoogle Scholar
Gabriel, VDA and Pizo, MA (2005) Foraging behavior of tyrant flycatchers (Aves, Tyrannidae) in Brazil. Revista Brasileira de Zoologia 22, 10721077. https://doi.org/10.1590/S0101-81752005000400036 CrossRefGoogle Scholar
García, J, Benítez, ER and López-Ávila, A (2007) Efecto de la densidad de población de Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) sobre la eficiencia del depredador Delphastus pusillus (Coleoptera: Coccinellidae). Corpoica Ciencia y Tecnología Agropecuaria 8, 17. https://doi.org/10.21930/rcta.vol8_num2_art:89 CrossRefGoogle Scholar
Gray, JS (1989) Effects of environmental stress on species rich assemblages. Biological Journal of the Linnean Society 37, 1932. https://doi.org/10.1111/j.1095-8312.1989.tb02003.x CrossRefGoogle Scholar
Gunnarsson, B, Wallin, J and Klingberg, J (2018) Predation by avian insectivores on caterpillars is linked to leaf damage on oak (Quercus robur). Oecologia 188, 733741. https://doi.org/10.1007/s00442-018-4234-z CrossRefGoogle ScholarPubMed
Gutiérrez, G (1998) Estrategias de forrajeo. In Ardila, R, López, W, Pérez, AM, Quiñones, R and Reyes, F (eds), Manual de Análisis Experimental del comportamiento. Madrid: Librería Nueva, pp. 359381.Google Scholar
Hernández-Agüero, JA, Polo, V, García, M, Simón, D, Ruiz-Tapiador, I and Cayuela, L (2020) Effects of prey colour on bird predation: an experiment in Mediterranean woodlands. Animal Behaviour 170, 8997. https://doi.org/10.1016/j.anbehav.2020.10.017 CrossRefGoogle Scholar
Hilty, SL and Brown, WL (2001) Guía de las aves de Colombia. Asociación Colombiana de Ornitología.Google Scholar
Hossie, TJ and Sherratt, TN (2012) Eyespots interact with body colour to protect caterpillar-like prey from avian predators. Animal Behaviour 84, 167173. https://doi.org/10.1016/j.anbehav.2012.04.027 CrossRefGoogle Scholar
Hossie, TJ and Sherratt, TN (2013) Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour 86, 383389. https://doi.org/10.1016/j.anbehav.2013.05.029 CrossRefGoogle Scholar
Howe, A, Lövei, GL and Nachman, G (2009) Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomologia Experimentalis et Applicata 131, 325329. https://doi.org/10.1111/j.1570-7458.2009.00860.x CrossRefGoogle Scholar
Howe, AG, Nachman, G and Lövei, GL (2015) Predation pressure in Ugandan cotton fields measured by a sentinel prey method. Entomologia Experimentalis et Applicata 154, 161170. https://doi.org/10.1111/eea.12267 CrossRefGoogle Scholar
Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM (2015) Datos Meteorológicos Estación 26055070. Cali, Colombia: Universidad del Valle, 1966–2015.Google Scholar
Kale, M, Dudhe, N, Ferrante, M, Ivanova, T, Kasambe, R, Trukhanova, IS, Kasambe, R, Trukhanova, IS, Bhattacharya, P and Lövei, GL (2018a) The effect of urbanization on the functional and scale-sensitive diversity of bird assemblages in Central India. Journal of Tropical Ecology 34, 341350. https://doi.org/10.1017/S0266467418000317 CrossRefGoogle Scholar
Kale, M, Ferrante, M, Dudhe, N, Kasambe, R, Trukhanova, IS, Ivanova, T, Bhattacharya, P and Lövei, GL (2018b) Nestedness of bird assemblages along an urbanization gradient in Central India. Journal of Urban Ecology 4. https://doi.org/10.1093/jue/juy017 CrossRefGoogle Scholar
Kattan, GH, Alvarez-Lopez, H and Giraldo, M (1994) Forest fragmentation and bird extinctions: San Antonio eighty years later. Conservation Biology 8, 138146. https://doi.org/10.1046/j.1523-1739.1994.08010138.x CrossRefGoogle Scholar
Koh, LP and Menge, DNL (2006) Rapid assessment of Lepidoptera predation rates in neotropical forest fragments. Biotropica 38, 132134. https://doi.org/10.1111/j.1744-7429.2006.00114.x Google Scholar
Kozlov, MV, Lanta, V, Zverev, V, Rainio, K, Kunavin, MA and Zvereva, EL (2017) Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Global Change Biology 23, 43544364. https://doi.org/10.1111/gcb.13692 CrossRefGoogle ScholarPubMed
Kwok, HK (2009) Foraging ecology of insectivorous birds in a mixed forest of Hong Kong. Acta Ecologica Sinica 29, 341346. https://doi.org/10.1016/j.chnaes.2009.09.014 CrossRefGoogle Scholar
Langen, TA and Berg, EC (2016) What determines the timing and duration of the nesting season for a tropical dry forest bird, the White-throated Magpie-Jay (Calocitta formosa)? The Wilson Journal of Ornithology 128, 3242. https://doi.org/10.1676/wils-128-01-32-42.1 CrossRefGoogle Scholar
Laxton, E (2005) Relationship between Leaf Traits, Insect Communities and Resource Availability. Ph.D. Thesis, Macquarie University, Australia.Google Scholar
Long, LC and Frank, SD (2020) Risk of bird predation and defoliating insect abundance are greater in urban forest fragments than street trees. Urban Ecosystems 23. https://doi.org/10.1007/s11252-020-00939-x CrossRefGoogle Scholar
Loiselle, BA and Farji-Brener, AG (2002) What’s up? An experimental comparison of predation levels between Canopy and understory in a tropical wet forest. Biotropica 34, 327330. https://doi.org/10.1111/j.1744-7429.2002.tb00545.x CrossRefGoogle Scholar
Lövei, GL and Ferrante, M (2017) A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Science 24, 528542. https://doi.org/10.1111/1744-7917.12405 CrossRefGoogle ScholarPubMed
Low, PA, Sam, K, McArthur, C, Posa, MRC and Hochuli, DF (2014) Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomologia Experimentalis et Applicata 152, 120126. https://doi.org/10.1111/eea.12207 CrossRefGoogle Scholar
Maas, B, Tscharntke, T, Saleh, S, Dwi Putra, D and Clough, Y (2015) Avian species identity drives predation success in tropical cacao agroforestry. Journal of Applied Ecology 52, 735743. https://doi.org/10.1111/1365-2664.12409 CrossRefGoogle Scholar
Magagnoli, S, Masetti, A, Depalo, L, Sommaggio, D, Campanelli, G, Leteo, F, Lövei, GL and Burgio, G (2018) Cover crop termination techniques affect ground predation within an organic vegetable rotation system: a test with artificial caterpillars. Biological Control 117, 109114. https://doi.org/10.1016/j.biocontrol.2017.10.013 CrossRefGoogle Scholar
Magura, T, Ferrante, M and Lövei, GL (2020) Only habitat specialists become smaller with advancing urbanization. Global Ecology and Biogeography 29, 19781987. https://doi.org/10.1111/geb.13168 CrossRefGoogle Scholar
Magura, T and Lövei, GL (2021) Consequences of urban living: urbanization and ground beetles. Current Landscape Ecology Reports 6, 921. https://doi.org/10.1007/s40823-020-00060-x CrossRefGoogle Scholar
Main, GG and Jackson, WM (2003) Effects of fragmentation on artificial nest predation in a tropical forest in Kenya. Biological Conservation 111, 161169. https://doi.org/10.1016/s0006-3207(02)00259-8 CrossRefGoogle Scholar
Mansion-Vaquié, A, Ferrante, M, Cook, SM, Pell, JK and Lövei, GL (2017) Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum aestivum). Journal of Applied Entomology 141, 600611. https://doi.org/10.1111/jen.12385 CrossRefGoogle Scholar
Mansor, M and Mohd Sah, SA (2012) Foraging patterns reveal niche separation in tropical insectivorous birds. Acta Ornithologica 47, 2736. https://doi.org/10.3161/000164512X653890 CrossRefGoogle Scholar
Mäntylä, E, Alessio, GA, Blande, JD, Heijari, J, Holopainen, JK, Laaksonen, T, Piirtola, P and Klemola, T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS ONE 3, e2832. https://doi.org/10.1371/journal.pone.0002832 CrossRefGoogle ScholarPubMed
McKinney, ML (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247260. https://doi.org/10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
Minno, MC, Butler, JF and Hall, DW (2005) Florida Butterfly Caterpillars and Their Host Plants. Miami, FLA, USA: University Press of Florida.Google Scholar
Molleman, F, Remmel, T and Sam, K (2016) Phenology of predation on insects in a tropical forest: temporal variation in attack rate on dummy caterpillars. Biotropica 48, 229236. https://doi.org/10.1111/btp.12268 CrossRefGoogle Scholar
Morse, DH (1990) Food exploitation by birds: some current problems and future goals. Studies in Avian Biology 13, 134143.Google Scholar
Nason, LD, Eason, PK, Carreiro, MM, Cherry, A and Lawson, J (2021) Caterpillar survival in the city: attack rates on model lepidopteran larvae along an urban-rural gradient show no increase in predation with increasing urban intensity. Urban Ecosystems 24(6), 112. https://doi.org/10.1007/s11252-020-01091-2 CrossRefGoogle Scholar
Niemelä, J and Kotze, DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landscape and Urban Planning 92, 6571. https://doi.org/10.1016/j.landurbplan.2009.05.016 CrossRefGoogle Scholar
Oliveira, RS, Diniz, P, Araujo-Lima, V, Rosário, G and Duca, C (2020) Contrast to background influences predation on aposematic but not cryptic artificial caterpillars in a Brazilian coastal shrubland. Journal of Tropical Ecology 36, 109114. https://doi.org/10.1017/S026646742000005X CrossRefGoogle Scholar
Pan, X, Mizuno, T, Ito, K, Ohsugi, T, Nishimichi, S, Nomiya, R, Ohno, M, Yamawo, A, and Nakamura, A (2020) Assessing temporal dynamics of predation and effectiveness of caterpillar visual defense using sawfly larval color and resting posture as a model. Insect Science 28, 18001815. https://doi.org/10.1111/1744-7917.12884 CrossRefGoogle ScholarPubMed
Parés-Ramos, IK, Álvarez-Berríos, NL and Aide, TM (2013) Mapping urbanization dynamics in major cities of Colombia, Ecuador, Perú, and Bolivia using night-time satellite imagery. Land 2, 3759. https://doi.org/10.3390/land2010037 CrossRefGoogle Scholar
Pena, JC, Aoki-Gonçalves, F, Dáttilo, W, Ribeiro, MC and MacGregor-Fors, I (2021) Caterpillars’ natural enemies and attack probability in an urbanization intensity gradient across a Neotropical streetscape. Ecological Indicators 128, 107851. https://doi.org/10.1016/j.ecolind.2021.107851 CrossRefGoogle Scholar
Philpott, SM, Soong, O, Lowenstein, JH, Pulido, AL, Lopez, DT, Flynn, DF and DeClerck, F (2009) Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecological Applications 19, 18581867. https://doi.org/10.1890/08-1928.1 CrossRefGoogle ScholarPubMed
Posa, MRC, Sodhi, NS and Koh, LP (2007) Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. Journal of Tropical Ecology 23, 2733. https://doi.org/10.1017/s0266467406003671 CrossRefGoogle Scholar
Postema, EG (2021) The effectiveness of eyespots and masquerade in protecting artificial prey across ontogenetic and seasonal shifts. Current Zoology. https://doi.org/10.1093/cz/zoab082 Google ScholarPubMed
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Disponible: http://www.R-project.org Google Scholar
Ramírez, L, Chacón, P and Constantino, LM (2007) Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea y Hesperioidea) en Santiago de Cali, Valle del Cauca, Colombia. Revista Colombiana de Entomología 33, 5463.CrossRefGoogle Scholar
Remmel, T, Davison, J and Tammaru, T (2011) Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biological Journal of the Linnean Society 104, 118. https://doi.org/10.1111/j.1095-8312.2011.01721.x CrossRefGoogle Scholar
Remmel, T and Tammaru, T (2009) Size-dependent predation risk in tree-feeding insects with different colouration strategies: a field experiment. Journal of Animal Ecology 78, 973980. https://doi.org/10.1111/j.1365-2656.2009.01566.x CrossRefGoogle ScholarPubMed
Remsen, JV, Cadena, CD, Nores, M, Pacheco, JF, Pérez, J and Robbins, MB (2020) A Classification of the Bird Species of South America. www.Museum.Lsu.Edu. https://www.museum.lsu.edu/~Remsen/SACCBiblio.htmGoogle Scholar
Richards, LA and Coley, PD (2007) Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. Oikos 116, 3140. https://doi.org/10.1111/j.2006.0030-1299.15043.x CrossRefGoogle Scholar
Rivera-Gutiérrez, HF (2006) Composición y estructura de una comunidad de aves en un área suburbana en el suroccidente colombiano. Ornitología colombiana 4, 2838. http://asociacioncolombianadeornitologia.org/wp-content/uploads/revista/oc4/Suburbana.pdf Google Scholar
Robinson, SK and Holmes, RT (1984) Effects of plant species and foliage structure on the foraging behavior of forest birds. The Auk 101, 672684. https://doi.org/10.2307/4086894 CrossRefGoogle Scholar
Roels, SM, Porter, JL and Lindell, CA (2018) Predation pressure by birds and arthropods on herbivorous insects affected by tropical forest restoration strategy. Restoration Ecology 26, 12031211. https://doi.org/10.1111/rec.12693 CrossRefGoogle Scholar
Sam, K, Koane, B and Novotny, V (2015) Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography 38, 293300. https://doi.org/10.1111/ecog.00979 CrossRefGoogle Scholar
Santos, T and Tellería, JL (2006) Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas. https://www.ucm.es/data/cont/media/www/pag-33471/2006_Ecosistemas_2_3.pdf Google Scholar
Schwagmeyer, PL and Mock, DW (2008) Parental provisioning and offspring fitness: size matters. Animal Behaviour 75, 291298. https://doi.org/10.1016/j.anbehav.2007.05.023 CrossRefGoogle Scholar
Seifert, CL, Lehner, L, Adams, MO and Fiedler, K (2015) Predation on artificial caterpillars is higher in countryside than near-natural forest habitat in lowland south-western Costa Rica. Journal of Tropical Ecology 31, 281284. https://doi.org/10.1017/s0266467415000012 CrossRefGoogle Scholar
Seress, G and Liker, A (2015) Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae 61, 373408. https://doi.org/10.17109/AZH.61.4.373.2015 CrossRefGoogle Scholar
Shochat, E, Lerman, SB, Katti, M and Lewis, DB (2004) Linking optimal foraging behavior to bird community structure in an Urban-desert landscape: field experiments with artificial food patches. The American Naturalist 164, 232243. https://doi.org/10.2307/3473441 CrossRefGoogle Scholar
Sinu, PA, Viswan, G, Fahira, PP, Rajesh, TP, Manoj, K, Hariraveendra, M and Jose, T (2021) Shade tree diversity may not drive prey-predator interaction in coffee agroforests of the Western Ghats biodiversity hotspot, India. Biological Control 160, 104674. https://doi.org/10.1016/j.biocontrol.2021.104674 CrossRefGoogle Scholar
Taubert, F, Fischer, R, Groeneveld, J, Lehmann, S, Müller, MS, Rödig, E, Wiegand, T and Huth, A (2018) Global patterns of tropical forest fragmentation. Nature 554, 519522. https://doi.org/10.1038/nature25508 CrossRefGoogle ScholarPubMed
Tiede, Y, Schlautmann, J, Donoso, DA, Wallis, CI, Bendix, J, Brandl, R and Farwig, N (2017) Ants as indicators of environmental change and ecosystem processes. Ecological Indicators 83, 527537. https://doi.org/10.1016/j.ecolind.2017.01.029 CrossRefGoogle Scholar
Torres, AM, Vargas, JA, Guevara Llano, M, Orrego, JA, Duque, OL, Moreno, MP and Ruiz, JM (2014) Uso de Samanea saman y Pithecellobium dulce (Fabaceae: Mimosoideae) por aves en el Jardín Botánico Universitario, Cali, Colombia. Revista de Ciencias 18, 6378. https://doi.org/10.25100/rc.v18i2.6098 Google Scholar
Tvardikova, K and Novotny, V (2012) Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. Journal of Tropical Ecology 28, 331341. https://doi.org/10.1017/s0266467412000235 CrossRefGoogle Scholar
Unno, A (2002) Tree species preferences of insectivorous birds in a Japanese deciduous forest: the effect of different foraging techniques and seasonal change of food resources. Ornithological Science 1, 133142. https://doi.org/10.2326/osj.1.133 CrossRefGoogle Scholar
Valdés-Correcher, E, Mäntylä, E, Barbaro, L, Damestoy, T, Sam, K and Castagneyrol, B (2022) Following the track: accuracy and reproducibility of predation assessment on artificial caterpillars. Entomologia Experimentalis et Applicata 170, 914921. https://doi.org/10.1111/eea.13210 CrossRefGoogle Scholar
Vehviläinen, H, Koricheva, J and Ruohomäki, K (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935943. https://doi.org/10.1111/j.0030-1299.2008.15972.x CrossRefGoogle Scholar
Wagner, LN (2008) Urbanization: 21st Century Issues and Challenges. Hauppauge, New York, United States: Nova Publishers.Google Scholar
Witz, BW (1990) Antipredator mechanisms in arthropods: a twenty year literature survey. The Florida Entomologist 73, 7199. https://doi.org/10.2307/3495331 CrossRefGoogle Scholar
Zvereva, EL and Kozlov, MV (2010) Responses of terrestrial arthropods to air pollution: a meta-analysis. Environmental Science and Pollution Research 17, 297311. https://doi.org/10.1007/s11356-009-0138-0 CrossRefGoogle ScholarPubMed
Supplementary material: Image

Cupitra-Rodríguez et al. supplementary material

Table S1

Download Cupitra-Rodríguez et al. supplementary material(Image)
Image 39.3 KB