Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T07:04:44.772Z Has data issue: false hasContentIssue false

Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy

Published online by Cambridge University Press:  01 June 2012

Tarin Toledo-Aceves*
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A.C., AP 63, 91070 Xalapa, Veracruz, Mexico
José G. García-Franco
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A.C., AP 63, 91070 Xalapa, Veracruz, Mexico
Siunelly Landero Lozada
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A.C., AP 63, 91070 Xalapa, Veracruz, Mexico
María Luisa León Mateos
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A.C., AP 63, 91070 Xalapa, Veracruz, Mexico
Keith MacMillan
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A.C., AP 63, 91070 Xalapa, Veracruz, Mexico
*
1Corresponding author. Email: tarintoledo@gmail.com

Extract

Low germination and seedling survival probabilities are reported in various species of epiphytic bromeliad (Benzing 1978, Hietz et al. 2011, Toledo-Aceves & Wolf 2008, Winkler et al. 2005; but see Cascante-Marín et al. 2008). If germination and seedling survival are limiting factors in the life cycle, differential germination and seedling survival between species should be reflected in the relative abundance of established plants (Cascante-Marín et al. 2006, 2008) and in their presence or absence in secondary vegetation (Hietz et al. 2011), while differential germination within the tree would be expected to contribute to a heterogeneous distribution of established plants within the canopy (Hietz et al. 2011, Zotz & Vollrath 2002). Many factors influence the performance and distribution of epiphytes, including forest condition, disturbance type, distance from seed source, tree size and species, microclimate, epiphyte population dynamics and physiology (Cascante-Marín et al. 2009, Hietz et al. 2011, Valencia-Diaz et al. 2010, Zotz & Hietz 2001). In this study, we tested whether germination and seedling survival rates differ between the epiphytic bromeliads Tillandsia multicaulis Steud., T. punctulata Schldl. & Cham. and T. butzii Mez, and whether species abundance reflects the ability to germinate and survive as seedlings within the cloud-forest canopy. We also explore how morphological and physiological traits of the studied species can influence their early establishment.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BENZING, D. H. 1978. Germination and early establishment of Tillandsia circinnata Schlecht. (Bromeliaceae) on some of its hosts and other supports in Southern Florida. Selbyana 5:95106.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B., DEN NIJS, J. C. M., SANAHUJA, O. & DURÁN-APUY, A. 2006. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic Applied Ecology 7:520532.CrossRefGoogle Scholar
CASCANTE-MARÍN, C., WOLF, J. H. D., OOSTERMEIJER, J. G. B. & DEN NIJS, J. C. M. 2008. Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441448.CrossRefGoogle Scholar
CASCANTE-MARÍN, C., VON MEIJENDELDT, N., DE LEEUW, H., WOLF, J. H., OOSTERMEIJER, J. G. B. & DEN NIJS, J. 2009. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25:6373.CrossRefGoogle Scholar
CRAWLEY, M. J. 2002. Statistical computing, an introduction to data analysis using S-plus. John Wiley and Sons Ltd, Chichester. 772 pp.Google Scholar
ESPEJO-SERNA, A., LÓPEZ-FERRARI, A. R. & RAMÍREZ-MORILLO, I. 2005. Bromeliaceae. Sosa, V. (ed.). Flora of Veracruz. Fascicle 136. Instituto de Ecología, Veracruz, Mexico. 307 pp.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2004. Effect of isolation on the structure and nutrient content of oak epiphyte communities. Plant Ecology 173:259269.CrossRefGoogle Scholar
HIETZ, P. & HIETZ-SEIFERT, U. 1995. Composition and ecology of vascular epiphyte communities along an altitudinal gradient in Central Veracruz, Mexico. Journal of Vegetation Science 6:487498.CrossRefGoogle Scholar
HIETZ, P., AUSSERER, J. & SCHINDLER, G. 2002. Growth, maturation and survival of epiphytic bromeliads in a Mexican humid montane forest. Journal of Tropical Ecology 18:177191.CrossRefGoogle Scholar
HIETZ, P., BUCHBERGER, G. & WINKLER, M. 2006. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12:103112.Google Scholar
HIETZ, P., WINKLER, M., SCHEFFKNECHT, S. & HÜLBER, K. 2011. Germination of epiphytic bromeliads in forests and coffee plantations: microclimate and substrate effects. Biotropica 44:197204.CrossRefGoogle Scholar
JOHANSSON, D. R. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59:1136.Google Scholar
MEHLTRETER, K., FLORES-PALACIOS, A. & GARCIA-FRANCO, J. 2005. Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology 21:651660.CrossRefGoogle Scholar
MONDRAGÓN, D. C., DURÁN, R., RAMÍREZ, I. & VALVERDE, T. 2004. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Peninsula, Mexico. Journal of Tropical Ecology 20:189200.CrossRefGoogle Scholar
QUINN, G. & KEOUGH, M.J. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge. 537 pp.CrossRefGoogle Scholar
SILVERTOWN, J. W. & LOVETT-DOUST, J. 1993. Introduction to plant population biology. Blackwell Science Ltd, Oxford. 2010 pp.Google Scholar
TOLEDO-ACEVES, T. & WOLF, J. H. D. 2008. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, México. Biotropica 40:246250.CrossRefGoogle Scholar
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., HERNÁNDEZ-ROJAS, A. & MACMILLAN, K. 2012. Recolonization of vascular epiphytes in a shaded coffee agroecosystem. Applied Vegetation Science 15:99107.CrossRefGoogle Scholar
VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V., VENTURA-ZAPATA, E. & JIMÉNEZ-APARICIO, A. 2010. Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. Journal of Tropical Ecology 26:571581.CrossRefGoogle Scholar
VERGARA-TORRES, C. A., PACHECO-ALAVEZ, M. C. & FLORES-PALACIOS, A. 2010. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. Journal of Tropical Ecology 26:563570.CrossRefGoogle Scholar
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95:10391047.CrossRefGoogle Scholar
WINKLER, M., HÜLBER, K. & HIETZ, P. 2007. Population dynamics of epiphytic bromeliads: life strategies and the role of host branches. Basic and Applied Ecology 8:183196.CrossRefGoogle Scholar
ZOTZ, G. 2005. Differences in vital demographic rates in three populations of the epiphytic bromeliad, Werauhia sanguinolenta. Acta Oecologica 28:306312.CrossRefGoogle Scholar
ZOTZ, G. & HIETZ, P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 364:20672078.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2002. Substrate preferences of epiphytic bromeliads: an experimental approach. Acta Oecologica 23:99102.CrossRefGoogle Scholar
ZOTZ, G., LAUBE, S. & SCHMIDT, G. 2005. Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28:806814.CrossRefGoogle Scholar