Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T16:08:14.385Z Has data issue: false hasContentIssue false

Plant species richness mediates the effects of vegetation structure, but not soil fertility, on insect gall richness in a savanna in Brazil

Published online by Cambridge University Press:  24 April 2017

Walter Santos de Araújo*
Affiliation:
Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil

Abstract:

The present study aims to investigate the effects of vegetation structure (plant abundance and height) and soil characteristics (soil organic matter and macronutrients) on insect gall richness, and determine the extent to which these effects are mediated by the indirect effects of plant species richness. The study was performed in forty-nine 100-m2 savanna plots in Parque Nacional das Emas (Brazil) and sampled a total of 985 individual plants of 71 plant species and 97 insect gall morphotypes. Cecidomyiidae (Diptera) induced the most insect galls (38.1%), and the plant family Myrtaceae had the greatest richness of insect gall morphotypes (16). Path analysis of plant abundance, plant height, soil macronutrients, soil organic matter and plant species richness explained 73% of insect gall richness. The results show that soil macronutrient quantity has a direct positive effect on insect gall richness, whereas plant abundance and plant height had only indirect positive effects on insect gall richness via the increase in plant species richness. These findings showed that both plant-related and environment-related factors are important to induce insect gall richness in Neotropical savannas, and that plant species richness should be taken into account to determine the richness of insect galls.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALTIERI, M. A. & NICHOLLS, C. I. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72:203211.CrossRefGoogle Scholar
ALVARES, C. A., STAPE, J. L., SENTELHAS, P. C., DE MORAES, J. L. G. & SPAROVEK, G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22:711728.Google Scholar
ARAÚJO, W. S. 2013. Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod–Plant Interactions 7:373377.Google Scholar
ARAÚJO, W. S., SCARELI-SANTOS, C., GUILHERME, F. A. G. & CUEVAS-REYES, P. 2013. Comparing galling insect richness among Neotropical savannas: effects of plant richness, vegetation structure and super-host presence. Biodiversity and Conservation 22:10831094.Google Scholar
ARAÚJO, W. S., CUEVAS-REYES, P. & GUILHERME, F. A. G. 2014. Local and regional determinants of galling-insect richness in Neotropical savanna. Journal of Tropical Ecology 30:269272.CrossRefGoogle Scholar
ARBUCKLE, J. L. 2003. Amos user's guide, 5.0 Update. Smallwaters, Chicago. 656 pp.Google Scholar
BLANCHE, K. R. & WESTOBY, M. 1995. Gall-forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76:23342337.CrossRefGoogle Scholar
CARNEIRO, M. A. A., BRANCO, C. S. A., BRAGA, C. E. D., ALMADA, E. D., COSTA, M. B. M., MAIA, V. C. & FERNANDES, G. W. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Revista Brasileira de Entomologia 53:365378.CrossRefGoogle Scholar
CORNELISSEN, T., FERNANDES, G. W. & VASCONCELLOS-NETO, J. 2008. Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:11211130.Google Scholar
CUEVAS-REYES, P., SIEBE, C., MARTÍNEZ-RAMOS, M. & OYAMA, K. 2003. Species richness of gall-forming insects in a tropical rain forest: correlations with plant diversity and soil fertility. Biodiversity and Conservation 12:411422.Google Scholar
CUEVAS-REYES, P., QUESADA, M., HANSON, P., DIRZO, R. & OYAMA, K. 2004. Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology 92:707716.CrossRefGoogle Scholar
CUEVAS-REYES, P., QUESADA, M. & OYAMA, K. 2006. Abundance and leaf damage caused by gall-inducing insects in a Mexican tropical dry forest. Biotropica 38:107115.Google Scholar
CUEVAS-REYES, P., OLIVEIRA-KER, F.T., FERNANDES, G.W. & BUSTAMANTE, M. 2011. Abundance of gall-inducing insect species in sclerophyllous savanna: understanding the importance of soil fertility using an experimental approach. Journal of Tropical Ecology 27:631–64.Google Scholar
DE BRUYN, L., SCHEIRS, J. & VERHAGEN, R. 2002. Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass. Oecologia 130: 594599.Google Scholar
DENNO, R. F., GRATTON, C., DÖBEL, H. & FINKE, D. L. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84:10321044.CrossRefGoogle Scholar
FELFILI, J. M., SILVA-JÚNIOR, M. C., SEVILHA, A. C., FAGG, C. W., WALTER, B. M. T., NOGUEIRA, P. E. & REZENDE, A. Z. 2004. Diversity, floristic and structural patterns of cerrado vegetation in Central Brazil. Plant Ecology 175:3746.Google Scholar
FERNANDES, G. W. & PRICE, P. W. 1988. Biogeographical gradients in galling species richness. Oecologia 76:161167.Google Scholar
FURLEY, P. A. 1999. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecology and Biogeography 8:223241.Google Scholar
GÁMEZ-VIRUÉS, S., GURR, G. M., RAMAN, A. & NICOL, H. I. 2010. Plant diversity and habitat structure affect tree growth, herbivory and natural enemies in shelterbelts. Basic and Applied Ecology 11:542549.Google Scholar
GONÇALVES-ALVIM, S. J. & FERNANDES, G. W. 2001. Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodiversity and Conservation 10:7998.Google Scholar
GRACE, J. B. 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge. 378 pp.Google Scholar
KLINK, C. A. & MACHADO, R. B. 2005. Conservation of the Brazilian Cerrado. Conservation Biology 19:707713.Google Scholar
MACCALLUM, R. C., BROWNE, M. W. & SUGAWARA, H. M. 1996. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods 1:130149.Google Scholar
MARQUES, E. S. A., PRICE, P. W. & COBB, N. S. 2000. Resource abundance and insect herbivore diversity on woody fabaceous desert plants. Environmental Entomology 29:696703.Google Scholar
NEVES, F. S., ARAÚJO, L. S., ESPÍRITO-SANTO, M. M., FAGUNDES, M., FERNANDES, G. W., SANCHEZ-AZOFEIFA, G. A. & QUESADA, M. 2010. Canopy herbivory and insect herbivore diversity in a dry forest-savanna transition in Brazil. Biotropica 42:112118.Google Scholar
PREACHER, K. J., CAI, L. & MACCALLUM, R. C. 2007. Alternatives to traditional model comparison strategies for covariance structure models. Pp. 3362 in Little, T. D., Bovaird, J. A. & Card, N. A. (eds). Modeling contextual effects in longitudinal studies. Lawrence Erlbaum Associates, Mahwah.Google Scholar
PRICE, P. W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62:244251.CrossRefGoogle Scholar
PRICE, P. W., FERNANDES, G. W., LARA, A. C. F., BRAWN, J., BARRIOS, H., WRIGHT, M. G., RIBEIRO, S. P. & ROTHCLIFF, N. 1998. Global patterns in local number of insect galling species. Journal of Biogeography 5:581591.CrossRefGoogle Scholar
RAMOS-NETO, M. B. & PIVELLO, V. R. 2000. Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environmental Management 26:675684.CrossRefGoogle Scholar
RIBEIRO, L. F. & TABARELLI, M. 2002. A structural gradient in cerrado vegetation of Brazil: changes in woody plant density, species richness, life history and plant composition. Journal of Tropical Ecology 18:775791.Google Scholar
ROOT, R. B. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43:95124.Google Scholar
SANTOS, J. C., SILVEIRA, F. A. O. & FERNANDES, G. W. 2008. Long-term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evolutionary Ecology 22:123137.Google Scholar
SCHMITT, T. A. 2011. Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment 29:304321.CrossRefGoogle Scholar
SILVA, D. M., BATALHA, M. A. & CIANCIARUSO, M. V. 2013. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna. Acta Botanica Brasilica 27:490497.Google Scholar
STARK, N. 1970. The nutrient content of plants and soils from Brazil and Surinam. Biotropica 2:5160.Google Scholar
VELDTMAN, R. & MCGEOCH, M. A. 2003. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecology 28:1113.CrossRefGoogle Scholar
VIANA, R. A. G., RODRIGUES, R. R., DAWSON, T. E. & OLIVEIRA, R.S. 2011. Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant and Soil 349:341353.CrossRefGoogle Scholar
VOURLITIS, G. L., LOBO, F. A., LAWRENCE, S., HOLT, K., ZAPPIA, A., PINTO, O. B. & NOGUEIRA, J. S. 2014. Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecology 215:963975.Google Scholar
WRIGHT, M. G. & SAMWAYS, M. J. 1996. Gall-insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodiversity Letters 4:151155.CrossRefGoogle Scholar
ZAVA, P. C. & CIANCIARUSO, M. V. 2014. Can we use plant traits and soil characteristics to predict leaf damage in savanna woody species? Plant Ecology 215:625637.Google Scholar