Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T02:56:13.626Z Has data issue: false hasContentIssue false

Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

Published online by Cambridge University Press:  30 July 2010

Lars Markesteijn*
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands Instituto Boliviano de Investigación Forestal, P.O. Box 6204, Santa Cruz de la Sierra, Bolivia
José Iraipi
Affiliation:
Instituto Boliviano de Investigación Forestal, P.O. Box 6204, Santa Cruz de la Sierra, Bolivia
Frans Bongers
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Lourens Poorter
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands Instituto Boliviano de Investigación Forestal, P.O. Box 6204, Santa Cruz de la Sierra, Bolivia Resource Ecology Group, Centre for Ecosystem Studies, Wageningen University (WU), P.O. Box 47, 6700 AA Wageningen, the Netherlands
*
1Corresponding author. E-mail: lars.markesteijn@wur.nl

Abstract:

We determined seasonal variation in soil matric potentials (ψsoil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y−1 rain) and moist forest (1580 mm y−1). In each forest we analysed the effect of drought on predawn leaf water potentials (ψpd) and drought response (midday leaf water potential at a standardized ψpd of −0.98 MPa; ψmd) of saplings of three tree species, varying in shade-tolerance and leaf phenology. ψsoil changed during the dry season and most extreme in the dry forest. Crests were drier than slopes and valleys. Dry-forest top soil was drier than deep soil in the dry season, the inverse was found in the wet season. In the moist forest the drought-deciduous species, Sweetia fruticosa, occupied dry sites. In the dry forest the short-lived pioneer, Solanum riparium, occupied wet sites and the shade-tolerant species, Acosmium cardenasii drier sites. Moist-forest species had similar drought response. The dry-forest pioneer showed a larger drought response than the other two species. Heterogeneity in soil water availability and interspecific differences in moisture requirements and drought response suggest great potential for niche differentiation. Species may coexist at different topographical locations, by extracting water from different soil layers and/or by doing so at different moments in time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D., KNIGHT, C., WEISS, S., BARTON, K. & STARMER, K. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449457.CrossRefGoogle ScholarPubMed
BALTZER, J. L., DAVIES, S. J., BUNYAVEJCHEWIN, S. & NOOR, N. S. M. 2008. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Functional Ecology 22:221231.CrossRefGoogle Scholar
BECKER, P., RABENOLD, P. E., IDOL, J. R. & SMITH, A. P. 1988. Water potential gradients for gaps and slopes in a Panamanian tropical moist forest's dry season. Journal of Tropical Ecology 4:173184.CrossRefGoogle Scholar
BONGERS, F., POORTER, L., ROMPAEY, R. V. & PARREN, M. P. E. 1999. Distribution of twelve moist forest canopy tree species in Liberia and Cote d'Ivoire: response curves to a climatic gradient. Journal of Vegetation Science 10:371382.CrossRefGoogle Scholar
BURSLEM, D. F. R. P., GRUBB, P. J. & TURNER, I. M. 1996. Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. Biotropica 28:636648.CrossRefGoogle Scholar
CAO, K. F. 2000. Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture. Journal of Tropical Ecology 16:101116.CrossRefGoogle Scholar
CLARK, D. B. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:2662.CrossRefGoogle Scholar
COCHRANE, T. T. 1973. El potencial agrícola del uso de la tierra en Bolivia. Editorial Don Bosco, La Paz, Bolivia. 826 pp.Google Scholar
COMITA, L. S. & ENGELBRECHT, B. M. J. 2009. Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:27552765.CrossRefGoogle Scholar
DAWS, M. I., MULLINS, C. E., BURSLEM, D. F. R. P., PATON, S. R. & DALLING, J. W. 2002. Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant and Soil 238:7989.CrossRefGoogle Scholar
DAWS, M. I., PEARSON, T. R. H., BURSLEM, D., MULLINS, C. E. & DALLING, J. W. 2005. Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecology 179:93105.CrossRefGoogle Scholar
DEKA, R. N., WAIRIU, M., MTAKWA, P. W., MULLINS, C. E., VEENENDAAL, E. M. & TOWNEND, J. 1995. Use and accuracy of the filter-paper technique for measurement of soil matric potential. European Journal of Soil Science 46:233238.CrossRefGoogle Scholar
ELLIS, A. R., HUBBELL, S. P. & POTVIN, C. 2000. In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis. Canadian Journal of Botany 78:13361347.CrossRefGoogle Scholar
ENGELBRECHT, B. M. J. & KURSAR, T. A. 2003. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136:383393.CrossRefGoogle ScholarPubMed
ENGELBRECHT, B. M. J., DALLING, J. W., PEARSON, T. R. H., WOLF, R. L., GÁLVEZ, D. A., KOEHLER, T., TYREE, M. T. & KURSAR, T. A. 2006. Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia 148:258269.CrossRefGoogle ScholarPubMed
ENGELBRECHT, B. M. J., COMITA, L. S., CONDIT, R., KURSAR, T. A., TYREE, M. T., TURNER, B. L. & HUBBELL, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:8082.CrossRefGoogle ScholarPubMed
FAWCETT, R. G. & COLLIS-GEORGE, N. 1967. A filter-paper method for determining the moisture characteristics of soil. Australian Journal of Experimental Agriculture and Animal Husbandry 7:162167.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
GIBBONS, J. M. & NEWBERY, D. M. 2003. Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest. Plant Ecology 164:118.CrossRefGoogle Scholar
GILBERT, G. S. 2001. Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panamá. Oecologia 127:509516.CrossRefGoogle ScholarPubMed
HODNETT, M. G., DA SILVA, L. P., DA ROCHA, H. R. & CRUZ SENNA, R. 1995. Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. Journal of Hydrology 170:233254.CrossRefGoogle Scholar
ISHIZUKA, S., TANAKA, S., SAKURAI, K., HIRAI, H., HIROTANI, H., OGINO, K., LEE, H. S. & KEDAWANG, J. J. 1998. Characterization and distribution of soils at Lambir Hills National Park in Sarawak, Malaysia, with special reference to soil hardness and soil texture. Tropics 8:3144.CrossRefGoogle Scholar
ITOH, A., YAMAKURA, T., OHKUBO, T., KANZAKI, M., PALMIOTTO, P. A., LAFRANKIE, J. V., ASHTON, P. S. & LEE, H. S. 2003. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research 18:307320.CrossRefGoogle Scholar
JACKSON, P. C., CAVELIER, J., GOLDSTEIN, G., MEINZER, F. C. & HOLBROOK, N. M. 1995. Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101:197203.CrossRefGoogle ScholarPubMed
JARDIM, A. G., KILLEEN, T. J. & FUENTES, A. 2003 Guia de los arboles y arbustos del Bosque Seco Chiquitano, Bolivia. Editorial FAN, Santa Cruz de la Sierra. 324 pp.Google Scholar
JENNY, H. 1980. The soil resource: origin and behavior. Springer-Verlag, Berlin. 377 pp.CrossRefGoogle Scholar
JOHNSSON, M. J. & STALLARD, R. F. 1989. Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. Journal of Sedimentary Research 59:768781.Google Scholar
JONES, H. G. & SUTHERLAND, R. A. 1991. Stomatal control of xylem embolism. Plant, Cell and Environment 14:607612.CrossRefGoogle Scholar
KILLEEN, T. J., JARDIM, A., MAMANI, F. & ROJAS, N. 1998. Diversity, composition and structure of a tropical semideciduous forest in the Chiquitania; a region of Santa Cruz, Bolivia. Journal of Tropical Ecology 14:803827.CrossRefGoogle Scholar
KILLEEN, T. J., DOUGLAS, M., CONSIGLIO, T., JØRGENSEN, P. M. & MEJIA, J. 2007. Dry spots and wet spots in the Andean hotspot. Journal of Biogeography 34:13571373.CrossRefGoogle Scholar
KURSAR, T. A., ENGELBRECHT, B. M. J. & TYREE, M. T. 2005. A comparison of methods for determining soil water availability in two sites in Panama with similar rainfall but distinct tree communities. Journal of Tropical Ecology 21:297305.CrossRefGoogle Scholar
KURSAR, T. A., ENGELBRECHT, B. M. J., BURKE, A., TYREE, M. T., EI OMARI, B. & GIRALDO, J. P. 2009. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Functional Ecology 23:93102.CrossRefGoogle Scholar
LAVELLE, P. & SPAIN, A. V. 2002. Soil ecology. Springer, Berlin. 688 pp.Google Scholar
LESCURE, J. P. & BOULET, R. 1985. Relationships between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17:155164.CrossRefGoogle Scholar
MARKESTEIJN, L. 2010. Drought tolerance of tropical tree species: functional traits, trade-offs and species distribution. Ph.D. thesis. Forest Ecology and Forest Management group, Wageningen University, Wageningen. 204 pp.Google Scholar
MARKESTEIJN, L. & POORTER, L. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97:311325.CrossRefGoogle Scholar
MEENTEMEYER, R. K., MOODY, A. & FRANKLIN, J. 2001. Landscape-scale patterns of shrub-species abundance in California chaparral – the role of topographically mediated resource gradients. Plant Ecology 156:1941.CrossRefGoogle Scholar
MEINZER, F. C., ANDRADE, J. L., GOLDSTEIN, G., HOLBROOK, N. M., CAVELIER, J. & WRIGHT, S. J. 1999. Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293301.CrossRefGoogle Scholar
MOREIRA, M., STERNBERG, L. & NEPSTAD, D. 2000. Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach. Plant and Soil 222:95107.CrossRefGoogle Scholar
NUNES, M. A., CATARINO, F. & PINTO, E. 1989. Strategies for acclimation to seasonal drought in Ceratonia siliqua leaves. Physiologia Plantarum 77:150156.CrossRefGoogle Scholar
OLIVARES, E. & MEDINA, E. 1992. Water and nutrient relations of woody perennials from tropical dry forests. Journal of Vegetation Science 3:383392.CrossRefGoogle Scholar
PACHEPSKY, Y. A., TIMLIN, D. J. & RAWLS, W. J. 2001. Soil water retention as related to topographic variables. Soil Science Society of America Journal 65:17871795.CrossRefGoogle Scholar
PEÑA-CLAROS, M., FREDERICKSEN, T. S., ALARCÓN, A., BLATE, G. M., CHOQUE, U., LEAÑO, C., LICONA, J. C., MOSTACEDO, B., PARIONA, W., VILLEGAS, Z. & PUTZ, F. E. 2008. Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. Forest Ecology and Management 256:14581467.CrossRefGoogle Scholar
POCKMAN, W. T. & SPERRY, J. S. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation 1. American Journal of Botany 87:12871299.CrossRefGoogle Scholar
POORTER, L. & BONGERS, F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:17331743.CrossRefGoogle ScholarPubMed
POORTER, L. & HAYASHIDA-OLIVER, Y. 2000. Effects of seasonal drought on gap and understorey seedlings in a Bolivian moist forest. Journal of Tropical Ecology 16:481498.CrossRefGoogle Scholar
POORTER, L. & MARKESTEIJN, L. 2008. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321331.CrossRefGoogle Scholar
POORTER, L., BONGERS, F., KOUAMÉ, F. N. & HAWTHORNE, W. D. 2004. Biodiversity of West African forests: an ecological atlas of woody plant species. CABI, Wallingford. 528 pp.CrossRefGoogle Scholar
POTTS, M. D. 2003. Drought in a Bornean everwet rain forest. Journal of Ecology 91:467474.CrossRefGoogle Scholar
REICH, P. B. & BORCHERT, R. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:6174.CrossRefGoogle Scholar
SAXTON, K. E., RAWLS, W. J., ROMBERGER, J. S. & PAPENDICK, R. I. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50:10311036.CrossRefGoogle Scholar
SLOT, M. & POORTER, L. 2007. Diversity of tropical tree seedling responses to drought. Biotropica 39:683690.CrossRefGoogle Scholar
SOLLINS, P. 1998. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79:2330.CrossRefGoogle Scholar
SPERRY, J. S., ALDER, N. N. & EASTLACK, S. E. 1993. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. Journal of Experimental Botany 44:10751082.CrossRefGoogle Scholar
STRATTON, L. C., GOLDSTEIN, G. & MEINZER, F. C. 2000. Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest. Oecologia 124:309317.CrossRefGoogle Scholar
SWAINE, M. D. & BECKER, P. 1999. Woody life-form composition and association on rainfall and soil fertility gradients in Ghana. Plant Ecology 145:167173.CrossRefGoogle Scholar
TYREE, M. T. & HAMMEL, H. T. 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23:267282.CrossRefGoogle Scholar
TYREE, M. T., DAVIS, S. D. & COCHARD, H. 1994. Biophysical perspectives of xylem evolution: is there a trade-off of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal 15:335360.CrossRefGoogle Scholar
VALENCIA, R., FOSTER, R. B., VILLA, G., CONDIT, R., SVENNING, J. C., HERNANDEZ, C., ROMOLEROUX, K., LOSOS, E., MAGARD, E. & BALSLEV, H. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology 92:214229.CrossRefGoogle Scholar
VEENENDAAL, E. M., SWAINE, M. D., AGYEMAN, V. K., BLAY, D., ABEBRESE, I. K. & MULLINS, C. E. 1996. Differences in plant and soil water relations in and around a forest gap in West Africa during the dry season may influence seedling establishment and survival. Journal of Ecology 84:8390.CrossRefGoogle Scholar
VILLEGAS, Z., PEÑA-CLAROS, M., MOSTACEDO, B., ALARCÓN, A., LICONA, J. C., LEAÑO, C., PARIONA, W. & CHOQUE, U. 2009. Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. Forest Ecology and Management 258:971977.CrossRefGoogle Scholar
WALSH, R. P. D. & NEWBERY, D. M. 1999. The ecoclimatology of Danum, Sabah, in the context of the World's Rainforest Regions, with particular reference to dry periods and their impact. Philosophical Transactions of the Royal Society, Series B Biological Sciences 354:18691883.CrossRefGoogle ScholarPubMed
WEBB, C. O. & PEART, D. R. 2000. Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology 88:464478.CrossRefGoogle Scholar
WHITMORE, T. C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70:536538.CrossRefGoogle Scholar
WRIGHT, S. J. 1991. Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology 72:16431657.CrossRefGoogle Scholar
YANAGISAWA, N. & FUJITA, N. 1999. Different distribution patterns of woody species on a slope in relation to vertical root distribution and dynamics of soil moisture profiles. Ecological Research 14:165177.CrossRefGoogle Scholar
ZIMMERMANN, M. H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin. 143 pp.CrossRefGoogle Scholar