Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-14T22:17:11.822Z Has data issue: false hasContentIssue false

Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam

Published online by Cambridge University Press:  07 June 2005

M. TEMPORAL
Affiliation:
ETSII, Universidad de Castilla-La Mancha, Ciudad Real, Spain
J. J. LOPEZ CELA
Affiliation:
ETSII, Universidad de Castilla-La Mancha, Ciudad Real, Spain
A. R. PIRIZ
Affiliation:
ETSII, Universidad de Castilla-La Mancha, Ciudad Real, Spain
N. GRANDJOUAN
Affiliation:
École Polytechnique–CNRS–CEA–Université Paris VI, Palaiseau, France
N. A. TAHIR
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Darmstadt,Germany
D. H. H. HOFFMANN
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Darmstadt,Germany Institut für Kernphysik, Technische Universität, Darmstadt, Germany

Abstract

The compression of a cryogenic hydrogen cylindrical sample contained in a hollow gold target driven by an intense co-axial uranium beam has been studied. The ion distribution is assumed to be Gaussian in space and parabolic in time. The hydrodynamics of the target is analyzed by means of one- and two-dimensional numerical simulations. A parametric study is performed to achieve the maximum average hydrogen density and temperature as a function of the sample radius, total number of ions and spread of the spatial ion distribution. A window in the beam-target parameters for which hydrogen compression is higher than a factor of 10 and temperature is below 0.2 eV has been found by considering a single bunch that contains 2 × 1011 uranium ions delivered in 100 ns. In this range of high densities and low temperatures, it is expected that hydrogen may become metallic.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addessio, F.L., Baumgardner, J.R., Dukowicz, J.K., Johnson, N.L., Kashiwa, B.A., Rauenzahn, R.M. & Zemach, C. (1990). CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip (LA-10613-MS, Rev. 1). Los Alamos, NM: Los Alamos National Laboratory.
Anisimov, S.I., Prokhorov, A.M. & Fortov, V.E. (1984). Application of powerful laser in dynamical physics of high pressure. Sov. Phys. Usp. 27 181220.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V. & Krasuyk, I. (2003). Shock pressure induced by 0.44 mu m laser radiation on aluminum targets. Laser Part. Beams 21, 481487.Google Scholar
Benuzzi, A., Lower, T., Koenig, M., Faral, B., Batani, D., Beretta, D., Danson, C. & Pepler, D. (1996). Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10–40 Mbar pressure range. Phys. Rev. E 54, 21622165.Google Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Cauble, R., DaSilva, L.B., Perry, T.S., Bach, D.R., Budi, K.S., Celliers, P., Collins, G.W., Ng, A., Barbee, T.W., Hammel, B.A., Holmes, N.C., Kilkenny, J.D., Wallace, R.J., Chiu, G. & Woolsey, N.C. (1997). Absolute measurements of the equations of state of low-Z materials in the multi-Mbar regime using laser-driven shocks. Phys. Plasmas 4, 18571861.CrossRefGoogle Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022105.Google Scholar
Collins, G.W., Da Silva, L.B., Celliers, P., Gold, D.M., Foord, M.E., Wallace, R.J., Ng, A., Weber, S.V., Budil, K.S. & Cauble, R. (1998). Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281, 11781181.CrossRefGoogle Scholar
Cottet, F., Romain, J.P., Fabbro, R. & Faral, B. (1984). Ultrahigh pressure laser-driven shock-wave experiments at 0.26 mu-m wavelength. Phys. Rev. Lett. 52, 18841886.CrossRefGoogle Scholar
Fabbro, R., Faral, B., Virmont, J., Pepin, H., Cottet, F. & Romain, J.P. (1986). Experimental evidence of the generation of multi-hundred megabar pressure in 0.26 mu-m wavelength laser experiments. Laser Part. Beams 4, 413419.CrossRefGoogle Scholar
Godwal, B.K., Rao, R.S., Verma, A.K., Shukla, M., Pant, H.C. & Sikka, S.K. (2003). Equation of state of condensed matter in laser-induced high-pressure regime. Laser Part. Beams 21, 523528.Google Scholar
Henning, W.F. (2004). The future GSI facility. Nuclear Instr. Meth. B 214, 211215.CrossRefGoogle Scholar
Koenig, M., Faral, B., Boudenne, J. M., Batani, D., Benuzzi, A., Bossi, S., Rémond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser-driven shock-waves. Phys. Rev. Lett. 74, 22602263.CrossRefGoogle Scholar
Krane, K.S. (1988). Introductory Nuclear Physics. New York: J. Wiley & Sons.
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.CrossRefGoogle Scholar
Nellis, W.J., Mitchell, A.C., McCandless, P.C., Erskine, D.J. & Weir, S.T. (1992). Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Phys. Rev. Lett. 68, 29372940.CrossRefGoogle Scholar
Nuckolls, J., Thiessen, A., Wood, L. & Zimmerma, G. (1972). Laser compression of matter to super-high densities-thermonuclear (CTR) applications. Nature 239, 139.CrossRefGoogle Scholar
Obenschain, S.P., Whitlock, R.R., McLean, E.A., Ripin, B.H., Price, R.H., Phillion, D.W., Campbell, E.M., Rosen, M.D. & Auerbach, J.M. (1983). Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2. Phys. Rev. Lett. 50, 4448.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hoffmann, D.H.H. (2002). Analytic model for studying heavy-ion-imploded cylindrical targets. Laser Part. Beams 20 427429.CrossRefGoogle Scholar
Ragan, C.E. (1980). Ultrahigh-pressure shock-wave experiments. Phys. Rev. A 21, 458463.CrossRefGoogle Scholar
Ragan, C.E. (1984). Shock-wave experiments at threefold compression. Phys. Rev. A 29, 13911402.CrossRefGoogle Scholar
Ragan, C.E., Silbert, M.G. & Diven, B.C. (1977). Shock compression of molybdenum to 2.0 Tpa by means of a nuclear explosion. J. Appl. Phys. 48, 28602870.Google Scholar
Ramis, R., Schmalz, R. & Meyer-ter-Vehn, J. (1988). MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Comp. Phys. Com. 49, 475505.CrossRefGoogle Scholar
Remington, B.A., Arnett, D., Drake, R.P. & Takabe, H. (1999). Experimental astrophysics—Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284, 14881493.CrossRefGoogle Scholar
Sesame (1992). The LANL Equation of State Database (Report: LA-UR-92-3407). Springfield, VA: National Technical Information Service.
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, A. & Bock, R. (2000). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 19751980.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001). Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets. Phys. Rev. E 63, 016402.Google Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, N., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, V., Puriz, A.R., Shutov, A., Spiller, P., Temporal., M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485.CrossRefGoogle Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609614.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of shock wave and high temperature hydrodynamic phenomena. New York: Academic Press.
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1996). The stopping and ranges of ions in solid. New York: Pergamon.
Wigner, E. & Huntington, H.B. (1935). The possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764770.CrossRefGoogle Scholar
Weir, S.T., Mitchell, A.C. & Nellis, W.J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 18601863.CrossRefGoogle Scholar