Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T03:20:27.127Z Has data issue: false hasContentIssue false

Energy balance aspect in KALI-30 GW high-voltage pulse power source

Published online by Cambridge University Press:  12 September 2014

Archana Sharma*
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
S. Mitra
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
Senthil K. Vishnu Sharma
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
Sandeep Singh
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
S.V. Tewari
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
K.C. Mittal
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
*
Address correspondence and reprint requests to: Archana Sharma, Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai-400085, India. E-mail: as25566042@gmail.com

Abstract

This paper elaborates the effect of unmatched stored energy in high-voltage high-energy pulsed power systems. High-voltage insulation failure of KALI system is analyzed thoroughly for its occurrence. According to the simulations and analysis energy mismatch of MARX generator and Blumlein transmission line is found to be the most significant cause for high-voltage failure of the system. MARX generator and Blumlein of KALI are redesigned to attain better energy balance at same voltage level. Observations, simulation and analytical results are illustrated in the following sections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Freund, H.P. & Antonsen, T.M. (1996). Principles of Free-Electron Lasers. New York: Springer-Verlag.Google Scholar
Gold, S.H. & Nusinovich, G.S. (1997). Review of high-power microwave source research. Rev. Sci. Instrum. 68, 39453974.CrossRefGoogle Scholar
Kumar, D.D.P., Mitra, S., Senthil, K., Sharma, A., Nagesh, K.V., Singh, S.K., Mondal, J., Roy, A. & Chakravarthy, D.P. (2007). Characterization and analysis of a pulse power system based on Marx generator and Blumlein. Rev. Sci. Instrum. 78, 115107/1–4.Google Scholar
Liu, L., Li, L.-M., Zhang, X.-P., Wen, J.-C., Wan, H. & Zhang, Y.-Z. (2007). Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode. IEEE Trans. Plasma Sci. 35, 361368.CrossRefGoogle Scholar
Maenchen, J., Cooperstein, G., O'Malley, J. & Smith, I. (2004). Advances in pulsed power-driven radiography systems. Proc. IEEE 92, 10211042.CrossRefGoogle Scholar
Mazarakis, M.G., Poukey, J.W., Maenchen, J.E., Rovang, D.C., Menge, P.R., Lash, J.S., Smith, D.L., Johnson, D.L., Halbleib, J.A., Cordova, S.R., Mikkelson, K., Gustwiller, J., Stygar, W.A., Welch, D.R., Smith, I. & Corcoran, P. (1997). Inductive voltage adder (IVA) for submillimeter radius electron beam. Proc. 11th IEEE Pulse Power Conf. 1, 642650.Google Scholar
Miller, R.B. (1982). An Introduction to the Physics of Intense Charge Particle Beams. New York: Plenum.Google Scholar
Mondal, J., Kumar, D.D.P., Roy, A., Mitra, S., Sharma, A., Singh, S.K, Rao, G.V., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2007). Intense gigawatt relativistic electron beam generation in the presence of prepulse. J. Appl. Phys. 101, 034905/1–4.CrossRefGoogle Scholar
Roy, A., Menon, R., Mitra, S., Kumar, D.D.P., Kumar, S., Sharma, A., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008 a). Intense relativistic electron beam generation and prepulse effect in high power cylindrical diode. J. Appl. Phys. 103, 014 905/1–6.Google Scholar
Roy, J., Mondal, R., Menon, S., Mitra, D.D.P., Kumar, A., Sharma, K.C., Mittal, K.V. Nagesh & Chakravarthy, D.P. (2007). Intense gigawatt relativistic electron beam generation in the presence of prepulse. Part II. J. Appl. Phys. 102, 064902/1–5.CrossRefGoogle Scholar
Roy, R., Menon, S., Mitra, D.D.P., Kumar, S., Kumar, V.K., Sharma, A., Patel, A., Sharma, K.C., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008 b). Effect of cathode diameter on intense relativistic electron beam generation in the presence of prepulse. J. Appl. Phys. 104, 1.CrossRefGoogle Scholar
Schneider, L.X., Reed, K.W. & Kaye, R.J. (1997). Applications of Accelerators in Research and Industry (Duggan, J.L. & Morgan, I.L., Eds.). New York: AIP.Google Scholar
Smith, D. (2004). Induction voltage adders and the induction accelerator family. Phys. Rev. Spec. Top., Accel. Beams 7, 064801/1-41.CrossRefGoogle Scholar