Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:17:50.958Z Has data issue: false hasContentIssue false

A catalogue of losses for a high power, high intensity accelerator

Published online by Cambridge University Press:  18 July 2014

P.A.P. Nghiem*
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France
N. Chauvin
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France
M. Comunian
Affiliation:
INFN/LNL, Legnaro (PD), Italy
C. Oliver
Affiliation:
CIEMAT, Madrid, Spain
D. Uriot
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France
*
Address correspondence and reprint requests to: P.A.P. Nghiem, CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France. E-mail: phu-anh-phi.nghiem@cea.fr

Abstract

For a Megawatt class accelerator, classical safety measures may not be sufficient. Precise knowledge of beam loss location and power deposition in the most various scenarios is crucial for the definition of appropriate protection systems. In this work, the case of the Linear IFMIF Prototype Accelerator is studied, where, due to its very high continuous wave beam intensity, the high power part concerns almost the whole accelerator. Beam dynamics simulations are performed to allow the ability to estimate beam losses in all the different situations of the accelerator lifetime: starting from scratch, beam commissioning, tuning or exploration, routine operation, sudden failures. All the results of these studies are given, establishing the catalogue of losses. Recommendations for hot point protection, beam stop speed, beam power limitation are given accordingly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chauvin, N.Delferrière, O., Duperrier, R., Gobin, R., Mosnier, A., Nghiem, P.A.P. & Uriot, D. (2011). Start-to-end beam dynamics simulations for the prototype accelerator of the IFMIF/EVEDA project. Proc. of IPAC. San Sebastián, Spain.Google Scholar
Chauvin, N., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P., Uriot, D. (2009 a). Final design of the IFMIF-EVEDA low energy beam transport line. Proc. of PAC. Vancouver, BC, Canada.Google Scholar
Chauvin, N., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P. & Uriot, D. (2012). Transport of intense ion beams and space charge compensation issues in low energy beam lines. Rev. Sci. Instru. 83, 02B320.CrossRefGoogle ScholarPubMed
Chauvin, N., Duperrier, R., Mosnier, A., Nghiem, P.A.P. & Uriot, D. (2009 b). Optimisation results of beam dynamics simulations for the superconducting HWR Linac. Proc. of PAC. Vancouver, BC, Canada.Google Scholar
Chauvin, N., et al. (2013). Beam commissioning of the linear IFMIF prototype accelerator Injector: Measurements and simulations. Proc. of IPAC. Shanghai, China.Google Scholar
Comunian, M & Pisent, A. (2011). The beam dynamics redesign of IFMIF-EVEDA RFQ for a larger input beam acceptance. Proc. of IPAC. San Sebastián, Spain.Google Scholar
Delferrière, O., Tuske, O., De Menezes, D., Harrault, F. & Gobin, R. (2007). ECR 140 mA D+ beam extraction optimisation for IFMIF EVEDA accelerator. Proc. of ICIS. Jeju, Korea.Google Scholar
Duperrier, R., Pichoff, N. & Uriot, D. (2002). CEA Saclay codes review for high intensity linacs computations. Proc. of ICCS. Amsterdam, Netherlands.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C. & Uriot, D. (2009 a). IFMIF-EVEDA accelerators: strategies and choices for optics and beam measurements. Proc. of PAC. Vancouver, Canada.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Oliver, C. & Uriot, D. (2009 b). Protocol of beam loss studies for the IFMIF-EVEDA prototype. IFMIF-EVEDA Technical note, BA_D_ 22B8WT.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C., Simeoni, W. & Uriot, D. (2011). The IFMIF-EVEDA challenges and their treatment. Nucl. Instru. Meth. Phys. Res. A 654, 6371.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C. & Uriot, D. (2014). Dynamics of the IFMIF very high intensity beam. Laser Part. Beams 32, 109118.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Oliver, C. & Uriot, D. (2012). Catalogue of losses for the IFMIF prototype accelerator. Proc. IPAC. New Orleans, LA.Google Scholar
Oliver, C., Brañas, B., Ibarra, A., Podadera, I., Chauvin, N., Mosnier, A., Nghiem, P. & Uriot, D. (2008). High energy beam transport line for the IFMIF-EVEDA accelerator. Proc. of EPAC08. Genoa, Italy.Google Scholar
Spädtke, P. (2008). Model for the description of ion beam extraction from electron cyclotron resonance ion sources. Rev Sci. Instrum. 81, 02B725.CrossRefGoogle Scholar