Skip to main content

Image analysis of expanding laser-produced lithium plasma plume in variable transverse magnetic field

  • Ajai Kumar (a1), Sony George (a2), R.K. Singh (a1), Hem Joshi (a1) and V.P.N. Nampoori (a2)...

Using fast imaging technique, the effect of transverse magnetic field on the shape and dynamics of the lithium plasma plume has been studied. Enhancement in the overall emission intensity as well as appearance of distinct structures (lobes) in the plasma plume in the presence of magnetic field has been observed. By introducing a variable magnetic field, the influence of J × B force in expanding plasma plume across the transverse magnetic field has been explored. It appears that J × B force does not has a substantial role in the observed structures in the present case rather different atomic processes, which get affected due to change in plasma parameters, are responsible for appearance of these structures.

Corresponding author
Address correspondence and reprint requests to: Ajai Kumar, Institute for Plasma Research, Gandhinagar 382 428, India. E-mail:
Hide All
ADAS: Atomic Data Analysis Structure available online at
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281290.
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.
Harilal, S.S., O’Shay, B., Tillack, M.S., Bindhu, C.V. & Najmabadi, F. (2005). Fast photography of a laser generated plasma expanding across a transverse magnetic field. IEEE Trans. Plasma Sci. 33, 474475.
Harilal, S.S., O’Shay, B., Tao, M. & Tillack, M. (2007). Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects. Appl. Phys. B 86, 547553.
Harilal, S.S., Tillack, M.S., O’Shay, B., Bindhu, C.V.F. & Najmabadi, F. (2004). Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E 69, 026413.
Haverkamp, J.D., Bourham, M.A., Du, S. & Narayan, J. (2009). Plasma plume dynamics in magnetically assisted pulsed laser deposition. J. Phys. D 42, 025201.
Joshi, H.C., Prahlad, V., Singh, R.K. & Kumar, A. (2009). Emission analysis of expanding laser produced lithium plasma plume in presence of ambient gas. Phys. Lett. A 373, 33503353.
Kim, T.H., Nam, S.H., Park, H.S., Song, J.K & Park, S.M. (2007). Effects of transverse magnetic field on a laser-produced Zn plasma and ZnO films grown by pulsed laser deposition. Appl. Surf. Sci. 253, 8054.
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010 a). Effect of magnetic field on laser blow-off Li plasma plume: Role of atomic processes. Laser Part. Beams 28, 121127
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010 b). Effect of magnetic field on laser-blow-off lithium plasma plume: structured temporal emission profile. Phys. Lett. A 374, 25552560.
Kumar, A., Chaudhary, V., Singh, R.K., George, S., Patel, K. & Singh, R. (2009). An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field. Rev. Sci. Instr. 80, 033503.
Kumar, A., George, S., Singh, R.K. & Nampoori, V.P.N. (2010). Influence of laser beam intensity profile on propagation dynamics of laser-blow-off plasma plume. Laser Part. Beams 28, 387392.
Neogi, A. & Thareja, R.K. (1999). Physics of plasmas laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and non-uniform magnetic field. Phys. Plasmas 6, 365371.
Peyser, T.A., Manka, C.K., Ripin, B.H. & Ganguly, G. (1992). Electron-ion hybrid instability in laser-produced plasma expansions across magnetic fields. Phys. Fluids B 4, 2448.
Qindeel, R., Bidin, N.B. & Daud, Y.M. (2008). Dynamics expansion of laser produced plasma with different materials in magnetic field. J. Phys. Conf. Series 142, 012069.
Rafique, M.S., Kaleeq-ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217.
Rai, V.N., Rai, A.K., Yueh, F-Yu. & Singh, J.P. (2003). Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt. 42, 2085.
Schwirzke, F., Schwarz, H. & Hora, H., eds. (1974). Laser Interaction and Related Plasma Phenomena. New York: Plenum.
Sharma, A.K. & Thareja, R.K. (2007). Anisotropic emission in laser-produced aluminum plasma in ambient nitrogen. Appl. Surf. Sci. 253, 31133121.
Shen, X.K., Lu, Y.F., Gebre, T., Ling, H.A. & Han, Y.X. (2006). Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303.
Singh, R.K. & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 88438859.
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.
Thareja, R.K. & Shrama, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanowic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 202 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd June 2018. This data will be updated every 24 hours.