Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T13:07:26.446Z Has data issue: false hasContentIssue false

Ion acceleration and plasma jets driven by a high intensity laser beam normally incident on thin foils

Published online by Cambridge University Press:  28 August 2013

Magdi Shoucri*
Affiliation:
Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec, Canada
Jean-Pierre Matte
Affiliation:
Institut national de la recherche scientifique (INRS) Centre Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
François Vidal
Affiliation:
Institut national de la recherche scientifique (INRS) Centre Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
*
Address correspondence and reprint requests to: Magdi Shoucri, Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec, J3X1S1, Canada. E-Mail: shoucri.magdi@ireq.ca

Abstract

We study the problem of the radiation pressure acceleration of ions and the formation of plasma jets, driven by a high-intensity circularly polarized laser beam normally incident on thin plasma targets. We use an Eulerian Vlasov code to solve the one-dimensional relativistic Vlasov-Maxwell equations for both electrons and ions. We consider the case of a high density plasma with n/ncr = 100, where ncr is the critical density. Three cases are studied with different target thicknesses, to investigate the physical processes involved when decreasing the target thickness from several electron skin depths down to the order of one skin depth. The results show a more important acceleration of the ions when the thickness is decreased. Although we observe in all cases a neutral plasma jet ejected from the back of the target, the evolution of the system which leads to the formation of this neutral plasma jet is different in the three cases considered. In each case, this evolution will be studied in details. Also, a leak or ejection of electrons from the back of the target is observed in the thinnest case treated (thickness of the order of the skin depth), before the formation of the neutral plasma jet, a regime called leaky light sail radiation pressure acceleration. The absence of noise in the Eulerian Vlasov code allows an accurate representation of the phase-space structures of the distribution functions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Lévy, A., Ceccotti, T., Thaury, C., Platonov, K., Loch, R.A. & Martin, Ph. (2008). Fast-ion energy-flux enhancement from ultrathin foils irradiated by intense and high-contrast short laser pulses. Phys. Rev. Lett. 101, 155002/1–4.CrossRefGoogle ScholarPubMed
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cechetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Liseykina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interaction. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shukla, P.K. (2009). Linear acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006/1–19.CrossRefGoogle Scholar
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D.C., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.CrossRefGoogle Scholar
Gibbon, P. & Bell, A.R. (1992). Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68, 1535.CrossRefGoogle ScholarPubMed
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffet, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.CrossRefGoogle ScholarPubMed
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-terVehn, J., Tajima, T., Nickels, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003/1–4.CrossRefGoogle ScholarPubMed
Kar, S., Borghesi, M., Bulanov, S.V., Key, M.H., Liseykina, T.V., Macchi, A., Mackinnon, A.J., Patel, P.K., Romagnani, L., Schiavi, A. & Willi, O. (2008). Plasma jets driven by ultraintense-laser interaction with thin foils. Phys. Rev. Lett. 100, 225004/1–4.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Special Topics-Accel. Beams 11, 031301/1–14.Google Scholar
Liseikina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171502/1–3.CrossRefGoogle Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasmas. Phys. Contr. Fusion 50, 124033/1–9.Google Scholar
Macchi, A., Cornolti, F., Pegoraro, F., Liseikina, T.V.,Ruhl, H. & Vshivkov, V.A. (2001). Surface oscillations in overdense plasmas irradiated by ultrashort laser pulses. Phys. Rev. Lett. 87, 205004/1–4.CrossRefGoogle ScholarPubMed
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003/1–4.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2010). Radiation pressure acceleration of ultrathin foils. New J. Phys. 12, 045013/1–18.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Prasad, R., Andreev, A.A., Ter-Avetisyan, S., Doria, D., Quinn, K.E., Romagnani, L., Brenner, C.M., Carroll, D.C., Dover, N.P., Neely, D., Foster, P.S., Gallegos, P., Green, J.S., McKenna, P., Najmudin, Z., Palmer, C.A.J., Schreiber, J., Streeter, M.J.V., Tresca, O., Zepf, M. & Borghesi, M. (2011). Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses. Appl. Phys. Lett. 99, 121504/1–3.CrossRefGoogle Scholar
Qiao, B., Geissler, M., Kar, S., Borghesi, M. & Zepf, M. (2011). Stable ion radiation pressure acceleration with intense laser pulses. Plasma Phys. Control. Fusion 53, 124009/1–8.CrossRefGoogle Scholar
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Contr. Fusion 51, 024004/1–14.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt laser-plasma interactions. Nat. Phys. 3, 5862.CrossRefGoogle Scholar
Ruhl, H. & Mulser, P. (1995). Relativistic Vlasov simulation of intense fs laser pulse-matter interaction. Phys. Lett. A 205, 388392.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffman, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103/1–16.CrossRefGoogle Scholar
Shoucri, M. (2008a). Numerical simulation of Wake-field acceleration using an Eulerian Vlasov code. Comm. Comp. Phys. 4, 703718.Google Scholar
Shoucri, M. (2008b). Numerical Solution of Hyperbolic Differential Equations. New-York: Nova Science.Google Scholar
Shoucri, M. (2009). The application of the method of characteristics for the numerical solution of hyperbolic differential equations. In Numerical Simulation Research Progress (Colombo, S.P., Rizzo, C.L., Eds.). New York: Nova Science Publishers, pp. 198.Google Scholar
Shoucri, M. (2010). Numerical solution of the relativistic Vlasov-Maxwell equations for the study of the interaction of a high intensity laser beam normally incident on an overdense plasma. In Eulerian Code for the Numerical Solution of the Kinetic Equations Plasmas (Shoucri, M., Ed.). New York: Nova Science Publishers, pp. 163236.Google Scholar
Shoucri, M. (2012). Ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma: a Vlasov code simulation. Comput. Sci. Disc. 5, 014005/1–19.CrossRefGoogle Scholar
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28 129147; also in: (2010). Harmonics generation in the reflection of a linearly polarized laser beam normally incident on an overdense plasma. In: Proc. 36th EPS Conf. Plasma Phys., Sofia, P1.022CrossRefGoogle Scholar
Shoucri, M., Afeyan, B. & Charbonneau-Lefort, M. (2008). Numerical simulation for ion acceleration in an intense laser wave incident on an overdense plasma. J. Phys. D Appl. Phys. 41, 215205/1–9.CrossRefGoogle Scholar
Shoucri, M., Gerhauser, H. & Finken, K.-H. (2003). Integration of the Vlasov equation along characteristics in one and two dimensions. Comp. Phys. Comm. 154, 6575.CrossRefGoogle Scholar
Shoucri, M., Lavocat-Dubuis, X., Matte, J.-P. & Vidal, F. (2010). Numerical simulations of harmonics generation by the reflection of an intense linearly polarized laser beam normally incident on an overdense plasma. Proc. 37th EPS Conf. Plasma Phys., Dublin, P2.225.Google Scholar
Shoucri, M.Lavocat-Dubuis, X., Matte, J.-P. & Vidal, F. (2011). Numerical study of ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 29, 315332.CrossRefGoogle Scholar
Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B. & Sagdeev, R.Z. (2009). Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Contr. Fusion 51, 024014/1–9.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003/1–4.CrossRefGoogle ScholarPubMed