Skip to main content
×
Home

Numerical study of radiative opacity for carbon and aluminum plasmas produced by high power pulsed lasers

  • Mohammad Hossein Mahdieh (a1) and Sahar Hosseinzadeh (a1)
Abstract
Abstract

In this paper, the opacity of plasma in local thermodynamic equilibrium condition was investigated numerically. The plasma was assumed to be produced by interaction of high power pulse laser with carbon and aluminum. Spectrally resolved opacities under different plasma temperature and density conditions were calculated and radiative absorption due to three absorption mechanisms; inverse bremsstrahlung, photo-ionization, and line absorption in plasmas was studied numerically. The purpose of this study is to calculate the values of absorption for inverse bremsstrahlung and photo-ionization processes for aluminum and carbon plasmas and to compare them for those of cold matter. In this investigation, the influences of density and temperature on plasma absorption were evaluated. The calculation results show that the opacity strength strongly depends on the plasma temperature and density.

Copyright
Corresponding author
Address correspondence and reprint requests to: Mohammad Hossein Mahdieh, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran. E-mail: mahdm@iust.ac.ir
References
Hide All
Abdallah J. Jr. & Clark R.E.H. (1991). X-ray transmission calculations for an aluminum plasma. J. Appl. Phys. 69, 23.
André M., Babonneau D., Bayer C., Bernard M., Bocher J-L., Bruneau J., Coudeville A., Coutant J., Dautray R., Decoster A., Decroisette M., Desenne D., Dufour J-M., Garçonnet J-P., Holstein P-A., Jadaud J-P., Jolas A., Juraszek D., Lachkar J., Lascaux P., Le Breton J-P., Louis-Jacquet M., Meyer B., Mucchielli F., Rousseaux C., Schirmann D., Schurtz G., Véron D. & Watteau J-P. (1994). Progress in inertial confinement fusion physics at Centre d'Etudes de Limeil-Valenton. Laser Part. Beams 12, 329342.
Babonneaua D., Bochera J.L., Bayera C., Decostera A., Juraszeka D., Perrinea J.P. & Thiell G. (1991). X-ray emission by the rear side of laser-irradiated gold targets, Laser Part. Beams 9, 527540.
Bailey J.E., Rochau G.A., Mancini R.C., Iglesias C.A., Mac Farlane J.J., Golovkin I.E., Blancard C., Cosse Ph, & Faussurier G. (2009). Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas, Phys. Plasmas 16, 116.
Bar-Shalom A., Oreg J., Goldstein W.H., Shvarts D. & Zigler A. (1989). Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A 40, 3183.
Bastiani S., Giulietti D., Giulietti A., Gizzi L.A., Ceccotti T. & Macchi A. (1995). A study of laser plasmas as X-ray sources in the 1-10 keV spectral region. Laser Part. Beams 13, 493501.
Bauche J. & Bauche-Arnoult C. (1996). Recent progress in the global description of atomic transitions. Phys. Scr. 99, 113.
Bauche-Arnoult C., Bauche J. & Klapisch M. (1978). Mean wavelength and spectral width of transition arrays in x-uv atomic spectra. J. Opt. Soc. Am. 68, 1136.
Colgan J., Fontesb C.J. & Abdallah J. Jr. (2006). Collisional-radiative studies of carbon plasmas. Hi. Ener. Density Phys. 2, 9096.
Cowan R.D. (1981). Theory of Atomic Spectra. Berkeley: University of California Press,
Eliezer S. (2002). The Interaction of High-Power Lasers with Plasmas. Philadelphia: IOP Publishing.
Faussurier G., Wilson B.G. & Chen M.H. (2001). Generalization of super-transition-array methods to hot dense plasmas by using optimum independent particle reference systems. Phys. Rev. E 65, 016403/1–5.
Gauthier J.C., Amiranoff F., Chenais-popovics C., Jamelot G., Koenig M., Labaune C., Leboucher-Dalimier E., Sauteret C. & Migus A. (1999). LULI activities in the field of high-power laser–matter interaction. Laser Part. Beams 17, 195208.
Gil J.M., Rodriguez R., Martel P., Florido R., Rubiano J.G., Mendoza M.A. & Minguez E. (2013). Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature. J. Quant. Spectrosc. & Rad.e Trans. 114, 136150.
Godwal B.K., Sikka S.K. & Kaushik T.C. (1997). Equation of state in laser shock simulations. Laser Part. Beams 15, 353365.
Green J.M. (1964). The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom. J. Quant. Spectrosc. Radiat. Trans. 4, 639.
Gupta N.K. & Godwal B.K. (2001). Effects of various parameters on numerical simulations of inertial confinement fusion hohlraum and radiation hydrodynamics. Laser Part. Beams 19, 259265.
Gupta N.K. & Godwal B.K. (2002). Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas. Pramana J. Phys. 59, 3351.
Gupta N.K. & Kumar V. (1995). Angular dependence of M and N band radiation and the effect of angular anisotropy on the total conversion efficiency of X rays emitted from a laser irradiated gold foil. Laser Part. Beams 13, 389402.
Heading D.J., Wark J.S., Bennett G.R. & Lee R.W. (1995). Simulations of spectra from dense aluminum plasmas. J. Quant. Spectros. Rad. Trans. 54, 167180.
Hutchinson Ian H. (2002). Principles of Plasma Diagnostics. New York: Cambridge University Press.
Iglesias C.A. & Rogers F.J. (1996). Update OPAL opacities. Astrophys. J. 464, 943.
Iglesias C.A., Nash J.K., Chen M.H. & Rogers F.J. (1994). Estimating plasma temperatures from transmission spectra, J. Quant. Spectrosc. Radiat. Trans. 51, 125.
Jiao-Long Z., Feng-Tao J., Gang J. & Jian-Min Y. (2003). Temperature diagnostics for iron plasmas by means of transmission spectrum obtained by accurate atomic data, Chin. Phys. Lett. 20, 862864.
Jin F., Zeng J. & Yuan J. (2008). Detailed diagnostics of a laser produced aluminum plasma by the Kalpha satellites. J. Quant. Spectrosc. Radiat. Trans. 109, 27072714.
Kauffman R.L., Suter L.J., Darrow C.B., Kilkenny J.D., Kornblum H.N., Montgomery D.S., Phillion D.W., Rosen M.D., Theissen A.R., Wallace R.J. & Ze F. (1994). High temperatures in inertial confinement fusion radiation cavities heated with 0.35 µm light. Phys. Rev. Lett. 73, 23202323.
Magee N.H., Abdallah J., Clark R.E.H., Cohen J.S., Collins L.A. & Csanak G. (1995). Atomic structure calculations and new Los Alamos astrophysical opacities. Astronomical Society of the Pacific Conference Series 78, 5155.
Mahdieh M.H. & Hosseinzadeh S. (2010). Calculation of the radiative opacity for some low Z plasmas produced by high power pulsed lasers. SPIE 7751, xxx.
Martin W.C. & Zalubas R. (1979). Energy levels of aluminum, Al I through Al XIII. J. Phys. Chem. Ref. Data 8, 817.
Martin W.C., Fuhr J.R., Kelleher D.E., Musgrove A., Sugar J., Wiese W.L., Mohr P.J. & Olsen K. (2006). NIST Atomic Spectra Database Version 2.0. Gaithersburg, MD: National Institute of Standards and Technology.
Marzi S., Giulietti A., Giulietti D., Gizzi L.A. & Salvetti A. (2000). A high brightness laser-plasma X-ray source at IFAM: characterization and applications. Laser Part. Beams 18, 109118.
Meister C.-V., Imran M. & Hoffmann D.H.H. (2011). Relative energy level shifts of hydrogen-like carbon bound-states in dense matter. Laser Part. Beams 29, 1727.
Moore C.E. (1970). Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U.S.) 34, 22.
Nishimura H., Endo T., Shiraga H., Kato Y. & Nakai S. (1993). X-ray emission from high-Z mixture plasmas generated with intense blue laser light, Appl. Phys. Lett. 62, 13441346.
Orlov N.Yu., Denisov O.B., Rosmej O.N., Schäfer D., Nisius Th., Wilhein Th., Zhidkov N., Kunin A., Suslov N., Pinegin A., Vatulin V. & Zhao Y. (2011). Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion. Laser Part. Beams 29, 6980.
Orlov N.Yu., Guskov S.Yu., Pikuz S.A., Rozanov V.B., Shelkovenko T.A., Zmitrenko N.V. & Hammer D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.
Orzechowski T.J., Rosen M.D., Kornblum H.N., Porter J.L. & Suter L.J. (1996). The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures, Phys. Rev. Lett. 77, 35453548.
Ramis R., Meyer-ter-Vehn J. & Ramírez J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Compu. Phys. Commun. 180, 977994.
Rickert A. & Meyer-Ter-Vehn J. (1990). Frequency-dependent opacity calculations for high-Z plasma including l splitting. Laser Part. Beams 8, 715727.
Rodriguez R., Florido R, Gil J.M., Rubiano J.G., Martel P., Mendoza M.A., Suárez D. & Mínguez E. (2008). Detailed-level-accounting approach calculation of radiative properties of aluminum plasmas in a wide range of density and temperature, J. Phys.: Confer. Ser. 112, 14.
Rodriguez R., Florido R., Gil J.M., Rubiano J.G., Martel P. & Minguez E. (2008). RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams 26, 433448.
Rogers F.J. & Iglesias C.A. (1992). Radiative atomic Rosseland mean opacity tables. Astrophys. J. Supp. 79, 507568.
Rogers F.J. & Iglesias C.A. (1994). Astrophysical opacity. Sci. 263, 5055.
Rose S.J. (1992). Calculations of the radiative opacity of laser-produced plasmas. J. Phys. B: At. Mol. Opt. Phys. 25, 16671681.
Rose S.J. (1991). High power laser produced plasma and astrophysics. Laser Part. Beams 9, 869879.
Rossall A.K., Gartside L.M.R., Chaurasia S., Tripathi S., Munda D.S., Gupta N.K., Dhareshwar L.J., Gaffney J., Rose S.J. & Tallents G.J. (2010). X-ray back-lighter characterization for iron opacity measurements using laser-produced aluminum K-alpha emission. J. Phys. B: At. Mol. Opt. Phys. 43, 155403.
Rozsnyai B.F. (1997). Collisional-radiative average-atom model for hot plasmas. Phys. Rev. E 55, 75077521.
Rozsnyai B.F. (2010). Hot plasma opacities in the presence or absence of local thermodynamic equilibrium. Hi. Ener. Density Phys. 6, 345355.
Seltzer S.M. (1993). Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Rad. Res. 136, 147170.
Verner D.A., Ferland G.J., Korista K.T. & Yakovlev D.G. (1996). Atomic data for astrophysics. II. New analytic fits for photo-ionization cross sections of atoms and ions. Astrophys. J. 465, 487498.
Winhart G., Eidmann K., Iglesias C.A. & Bar-Shalom A. (1996). Measurements of extreme UV opacities in hot dense Al, Fe, and Ho. Phys. Rev. 53, R1332R1335.
Yongqiang L., Jianhua W., Yong H. & Jianmin Y. (2009), Radiative opacities of hot and solid-dense aluminum plasmas using a detailed level accounting model. J. Phys. B: At. Mol. Opt. Phys. 42, 111.
Zastrau U., Burian T., Chalupsky J., Döppner T., Dzelzainis T.W.J., Fäustlin R.R., Fortmann C., Galtier E., Glenzer S.H., Gregori G., Juha L., Lee H.J., Lee R.W., Lewis C.L.S., Medvedev N., Nagler B., Nelson A.J., Riley D., Rosmej F.B., Toleikis S., Tschentscher T., Uschmann I., Vinko S.M., Wark J.S., Whitcher T. & Förster E. (2012). XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams 30, 4556.
Zel'dovich Ya.B. & Raizer Yu.P. (1966). Physics of shock waves and High-Temperature Hydrodynamics Phenomena. New York: Academic.
Zeng J.L., Jin F.T., Yuan J.M., Lu Q.S. & Sun Y.S. (2000). Detailed-term-accounting-approximation simulation of x-ray transmission through laser-produced Al plasmas. Phys. Rev. E 62, 7251.
Zeng J., Jin F. & Yuan J. (2006). Radiative opacity of plasmas studied by detailed term (level) accounting approaches. Frontiers Phys. China 1, 468489.
Zeng J., Yuan J. & Lu Q. (2001). Detailed-term-accounting-approximation calculations of the radiative opacity of laser-produced Al plasmas. Phys. Rev. E 64, 066412/1–9.
Zhang J., Key M.H., Norreys P.A., Danson C., Neely D., Rose S.J., Walsh F., Tallents G.J., Dwivedi L., Holden M., Holden P.B., Pert G.J., Ramsden S.A., Lewis C.L.S., Macphee A.G. & You Y.L. (1996). Characteristics of rapidly recombining plasmas suitable for high-gain X-ray laser action. Laser Part. Beams 14, 7179.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.