Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:38:47.974Z Has data issue: false hasContentIssue false

First record of necrotizing hepatopancreatitis bacterium (NHP-B) associated with the zooplankton samples from the Gulf of California, Mexico

Published online by Cambridge University Press:  26 July 2013

Fernando Mendoza-Cano
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
Arturo Sánchez-Paz
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
Trinidad Encinas-García
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
Diego Alberto Galván-Álvarez
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
Daniel Eduardo Coronado-Molina
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
Jorge Hernández-López*
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, C.P. 83260México
*
Correspondence should be addressed to: J. Hernández-López, Centro de Investigaciones Biológicas del Noroeste S.C., Laboratorio de Referencia, Análisis y Diagnostico en Sanidad Acuícola, Hermosa 101, Col. Los Ángeles. Hermosillo, Sonora, México email: jhlopez04@cibnor.mx
Get access

Abstract

The presence of a shrimp necrotizing hepatopancreatitis bacterium (NHP) in zooplankton samples from the Gulf of California was confirmed by qPCR and DNA sequences analysis. Samples of zooplankton were collected from stations located on the eastern shore of the Gulf of California, an area adjacent geographically to the coast of Sonora, Mexico. Three zooplankton samples (NHP S3, S23 and S24) were detected. These samples were collected in Bahía de Agiabampo and Bahía de Guasimas, an area distributed along the length of the coast in the vicinity of a shrimp farm area. These results clearly indicate that NHP-B may be associated or colonizing zooplankton, which may serve as a potential vector of potential importance in the spread of this disease. The biological meaning of this finding is discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Asmat, A. and Gires, U. (2002) The occurrence of aerolysin-positive Aeromonas hydrophila strains in sea water and associated with marine copepods. In Proceedings of the Regional Symposium on Environment and Natural Resources. Hotel Renaissance Kuala Lumpur, Malaysia, 2002, pp. 495–502.Google Scholar
Austin, F. and Welch, H. (1972) The occurrence, life cycle, and pathogenicity of Echinuria uncinata (Rudolphi, 1819) Soloviev, 1912 (Spirurida, Nematoda) in waterfowl at Delta, Manitoba. Canadian Journal of Zoology 50, 385393.Google Scholar
Avila-Villa, L.A., Gollas-Galván, T., Martínez-Porchas, M., Mendoza-Cano, F. and Hernández-López, J. (2012) Experimental infection and detection of necrotizing hepatopancreatitis bacterium in the American lobster Homarus americanus . The Scientific World Journal 2012, 14.Google Scholar
Avila-Villa, L.A., Martínez-Porchas, M., Gollas-Galván, T., López-Elías, J.A., Mercado, L., Murguia-López, Á., Mendoza-Cano, F. and Hernández-López, J. (2011) Evaluation of different microalgae species and Artemia (Artemia franciscana) as possible vectors of necrotizing hepatopancreatitis bacteria. Aquaculture 318, 273276.Google Scholar
Binsztein, N., Costagliola, M.C., Pichel, M., Jurquiza, V., Ramírez, F.C., Akselman, R., Vacchino, M., Huq, A. and Colwell, R. (2004) Viable but nonculturable Vibrio cholerae O1 in the aquatic environment of Argentina. Applied and Environmental Microbiology 70, 74817486.CrossRefGoogle ScholarPubMed
Bradley-Dunlop, D.J., Pantoja, C. and Lightner, D.V. (2004) Development of monoclonal antibodies for detection of necrotizing hepatopancreatitis in penaeid shrimp. Diseases of Aquatic Organisms 60, 233240.Google Scholar
Carli, A., Pane, L., Casareto, L., Bertone, S. and Pruzzo, C. (1993) Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fisher 1860). Applied and Environmental Microbiology 59, 19601962.Google Scholar
Carrasco, N., López-Flores, I., Alcaraz, M., Furones, M., Berthe, F. and Arzul, I. (2007) Dynamics of the parasite Marteilia refringens (Paramyxea) in Mytilus galloprovincialis and zooplankton populations in Alfacs Bay (Catalonia, Spain). Parasitology 134, 15411550.Google Scholar
Cellini, L., Vecchio, A.D., Candia, M.D., Campli, E.D., Favaro, M. and Donelli, G. (2004) Detection of free and plankton-associated Helicobacter pylori in seawater. Journal of Applied Microbiology 97, 285292.CrossRefGoogle ScholarPubMed
Czeczuga, B., Kozlowzka, M., Godlewska, A. and Velu, S.C. (2008) Moina macropora (Straus): a plankton crustacean as vector for fungus-like fish parasites. Turkish Journal of Zoology 32, 1926.Google Scholar
Decaestecker, E., De Meester, L. and Ebert, D. (2002) In deep trouble: habitat selection constrained by multiple enemies in zooplankton. Proceedings of the National Academy of Sciences of the United States of America 99, 54815485.Google Scholar
Frelier, P., Sis, R., Bell, T. and Lewis, D. (1992) Microscopic and ultrastructural studies of necrotizing hepatopancreatitis in Pacific white shrimp (Penaeus vannamei) cultured in Texas. Veterinary Pathology Online 29, 269277.CrossRefGoogle ScholarPubMed
Gowing, M. and Wishner, K. (1992) Feeding ecology of benthopelagic zooplankton on an eastern tropical Pacific seamount. Marine Biology 112, 451467.Google Scholar
Gracia-Valenzuela, M.H., Avila-Villa, L.A., Yepiz-Plascencia, G., Hernández-López, J., Mendoza-Cano, F., Garcia-Sánchez, G. and Gollas-Galvan, T. (2011) Assessing the viability of necrotizing hepatopancreatitis bacteria (NHPB) stored at –20°C for use in forced-feeding infection of Penaeus (Litopenaeus) vannamei . Aquaculture 311, 105109.CrossRefGoogle Scholar
Heidelberg, J., Heidelberg, K. and Colwell, R. (2002) Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied and Environmental Microbiology 68, 54985507.Google Scholar
Huq, A., Small, E.B., West, P.A., Huq, M.I., Rahman, R.I. and Colwell, R.R. (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Applied and Environmental Microbiology 45, 275283.Google Scholar
Johnson, S.K. (1989) Digestive gland manifestations. In Johnson, S.K. (ed.) Handbook of shrimp diseases. Galveston, TX: Sea Grant College Program, Texas A&M University, p. 16.Google Scholar
Jones, K. (2001) Campylobacters in water sewage and the environment. Journal of Applied Microbiology 90 (Supplement 6), 68S79S.Google Scholar
Kaneko, T. and Colwell, R.R. (1973) Ecology of Vibrio parahaemolyticus in Chesapeake Bay. Journal of Bacteriology 113, 2432.CrossRefGoogle ScholarPubMed
Kaneko, T. and Colwell, R.R. (1975) Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Applied Microbiology 29, 269274.CrossRefGoogle ScholarPubMed
Kirn, T.J., Jude, B.A. and Taylor, R.K. (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438, 863866.CrossRefGoogle ScholarPubMed
Kitamura, S.I., Kamata, S.I., Nakano, S.I. and Suzuki, S. (2003) Detection of marine birnavirus genome in zooplankton collected from the Uwa Sea, Japan. Disease of Aquatic Organisms 54, 6972.Google Scholar
Lightner, D.V., Redman, R. and Bonami, J.R. (1992) Morphological evidence for a single bacterial etiology in Texas necotizing hepatopancreatitis in Penaeus vannamei (Crustacea, Decapoda). Disease of Aquatic Organisms 13, 235239.CrossRefGoogle Scholar
Loy, J.K., Dewhirst, F.E., Weber, W., Frelier, P.F., Garbar, T.L., Tasca, S.I. and Templeton, J.W. (1996) Molecular phylogeny and in situ detection of the etiologic agent of necrotizing hepatopancreatitis in shrimp. Applied and Environmental Microbiology 62, 34393445.Google Scholar
Maugeri, T.L., Carbone, M., Fera, M.T., Irrera, G.P. and Gugliandolo, C. (2004) Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. Journal of Applied Microbiology 97, 354361.Google Scholar
Møller, E.F., Riemann, L. and Søndergaard, M. (2007) Bacteria associated with copepods: abundance activity and community composition. Aquatic Microbial Ecology 47, 99106.Google Scholar
Nagasawa, S. (1988) Copepod–bacteria associations in Zielony Lake Poland. Journal of Plankton Research 10, 551554.Google Scholar
Nagasawa, S. and Nemoto, T. (1988) Presence of bacteria in guts of marine crustaceans and on their fecal pellets. Journal of Plankton Research 10, 559564.Google Scholar
Nese, L. and Enger, Ø. (1993) Isolation of Aeromonas salmonicida from salmon lice Lepeophtheirus salmonis and marine plankton. Diseases of Aquatic Organisms 16, 7981.Google Scholar
Nunan, L.M., Pantoja, C. and Lightner, D.V. (2008) Improvement of a PCR method for the detection of necrotizing hepatopancreatitis in shrimp. Diseases of Aquatic Organisms 80, 6973.Google Scholar
Oren, A. (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, 623638.Google Scholar
Plante, C.J., Jumars, P.A. and Baross, J.A. (1989) Rapid bacterial growth in the hindgut of a marine deposit feeder. Microbial Ecology 18, 2944.CrossRefGoogle ScholarPubMed
Pruzzo, C., Tarsi, R., Lleó, M.M., Signoretto, C., Zampini, M., Pane, L., Corwell, R.R. and Canepari, P. (2003) Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. Environmental Microbiology 5, 850858.Google Scholar
Rawlings, T.K., Ruiz, G.M. and Colwell, R.R. (2007) Association of Vibrio cholerae O1 El Tor and O139 Bengal with the copepods Acartia tonsa and Eurytemora affinis . Applied and Environmental Microbiology 73, 79267933.CrossRefGoogle ScholarPubMed
Rodrigues, J.L.M., Duffy, M.A., Tessier, A.J., Ebert, D., Mouton, L. and Schmidt, T.M. (2008) Phylogenetic characterization and prevalence of ‘Spirobacillus cienkowskii': a red-pigmented spiral-shaped bacterial pathogen of freshwater Daphnia species. Applied and Environmental Microbiology 74, 15751582.CrossRefGoogle ScholarPubMed
Santelli, C.M., Orcutt, B.N., Banning, E., Bach, W., Moyer, C.L., Sogin, M.L., Staudigel, H. and Edwards, K.J. (2008) Abundance and diversity of microbial life in ocean crust. Nature 453, 653656.Google Scholar
Signoretto, C., Burlacchini, G., Lleó, M.M., Pruzzo, C., Zampini, M., Pane, L., Franzini, G. and Canepari, P. (2004) Adhesion of Enterococcus faecalis in the non-culturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater. Applied and Environmental Microbiology 70, 68926896.Google Scholar
Signoretto, C., Burlacchini, G., Pruzzo, C. and Canepari, P. (2005) Persistence of Enterococcus faecalis in aquatic environments via surface interactions with copepods. Applied and Environmental Microbiology 71, 27562761.Google Scholar
Strom, S.L. (2008) Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 10431045.Google Scholar
Tamplin, M.L., Gauzens, A.L., Huq, A., Sack, D.A. and Colwell, R.R. (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Applied and Environmental Microbiology 56, 19771980.Google Scholar
Vezzulli, L., Pezzati, E., Repetto, B., Stauder, M., Giusto, G. and Pruzzo, C. (2008) A general role for surface membrane proteins in attachment to chitin particles and copepods of environmental and clinical vibrios. Letters in Applied Microbiology 46, 119125.Google Scholar
Vincent, A.G. and Lotz, J.M. (2007) Advances in research of necrotizing hepatopancreatitis bacterium (NHPB) affecting penaeid shrimp aquaculture. Reviews in Fisheries Science 15, 6373.Google Scholar
Zampini, M., Pruzzo, C., Bondre, V.P., Tarsi, R., Cosmo, M., Bacciaglia, A., Chhabra, A., Srivastava, R. and Srivastava, B.S. (2005) Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. FEMS Microbiology Letters 244, 267273.CrossRefGoogle ScholarPubMed