Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T18:43:59.833Z Has data issue: false hasContentIssue false

The Algebraic Multiplicity of Eigenvalues and the Evans Function Revisited

Published online by Cambridge University Press:  12 May 2010

Get access

Abstract

This paper is related to the spectral stability of traveling wave solutions of partial differential equations. In the first part of the paper we use the Gohberg-Rouche Theorem to prove equality of the algebraic multiplicity of an isolated eigenvalue of an abstract operator on a Hilbert space, and the algebraic multiplicity of the eigenvalue of the corresponding Birman-Schwinger type operator pencil. In the second part of the paper we apply this result to discuss three particular classes of problems: the Schrödinger operator, the operator obtained by linearizing a degenerate system of reaction diffusion equations about a pulse, and a general high order differential operator. We study relations between the algebraic multiplicity of an isolated eigenvalue for the respective operators, and the order of the eigenvalue as the zero of the Evans function for the corresponding first order system.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to the memory of M. S. Birman

References

Alexander, J., Gardner, R., Jones, C.. A topological invariant arising in the stability analysis of traveling waves . J. reineangew. Math., 410 (1990), 167212.Google Scholar
M. S. Birman, M. Z. Solomyak.Spectral theory of self-adjoint operators in Hilbert space. Reidel, Dordrecht, 1987.
C. Chicone, Y. Latushkin.Evolution semigroups in dynamical systems and differential equations. Amer. Math. Soc., Providence, RI, 1999.
Gardner, R.A., Jones, C. K. R. T.. Traveling waves of a perturbed diffusion equation arising in a phase field model . Indiana Univ. Math. J., 39 (1989), 11971222.CrossRefGoogle Scholar
Gesztesy, F., Latushkin, Y., Makarov, K. A.. Evans functions, Jost functions, and Fredholm determinants . Arch. Rat. Mech. Anal., 186 (2007), 361421. CrossRefGoogle Scholar
Gesztesy, F., Latushkin, Y., Mitrea, M., Zinchenko, M.. Non-self-adjoint operators, infinite determinants, and some applications . Russ. J. Math. Phys.,12 (2005), 443471. Google Scholar
Gesztesy, F., Latushkin, Y., Zumbrun, K.. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves . J. Math. Pures Appl., 90 (2008), 160200.CrossRefGoogle Scholar
Gesztesy, F., Makarov, K. A.. (Modified ) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited . Integral Eq. Operator Theory, 47 (2003), 457497; Erratum. 48 (2004), 425–426. CrossRefGoogle Scholar
I. Gohberg, S. Goldberg, M. Kaashoek. Classes of linear operators. Vol. 1. Birkhäuser, 1990.
Gurski, K. F., Kollar, R., Pego, R. L.. Slow damping of internal waves in a stably stratified fluid . Proc. Royal Soc. Lond. Ser. A Math. Phys. Engrg. Sci.,460 (2004), 977994. CrossRefGoogle Scholar
Gurski, K. F., Pego, R. L.. Normal modes for a stratified viscous fluid layer . Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 611625.CrossRefGoogle Scholar
Kapitula, T., Sandstede, B.. Edge bifurcations for near integrable systems via Evans function techniques . SIAM J. Math. Anal.,33 (2002), 11171143. CrossRefGoogle Scholar
Kapitula, T., Sandstede, B.. Eigenvalues and resonances using the Evans function . Discrete Contin. Dyn. Syst., 10 (2004), 857869.CrossRefGoogle Scholar
Kato, T.. Wave operators and similarity for some non-selfadjoint operators . Math. Ann.,162 (1966), 258279. CrossRefGoogle Scholar
Pego, R. L., Weinstein, M. I.. Eigenvalues and instabilities of solitary waves . Philos. Trans. Royal Soc. London Ser. A,340 (1992), 4794. CrossRefGoogle Scholar
M. Reed, B. Simon. Methods of modern mathematical physics. I: Functional analysis. Academic Press, New York, 1980.
M. Reed, B. Simon.Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness. Academic Press, New York, 1975.
B. Sandstede. Stability of traveling waves. In: Handbook of dynamical systems. Vol. 2. B. Hasselblatt, A. Katok (eds.). North-Holland, Elsevier, Amsterdam, 2002, pp. 983–1055.
B. Simon. Trace ideals and their applications. Cambridge University Press, Cambridge, 1979.
K. Zumbrun. Multidimensional stability of planar viscous shock waves. In:Advances in the Theory of Shock Waves. T.-P. Liu, H. Freistühler, A. Szepessy (eds.). Progress Nonlin. Diff. Eqs. Appls.,47, Birkhäuser, Boston, 2001, pp. 307–516.