Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T16:27:01.672Z Has data issue: false hasContentIssue false

Spatio-TemporalModelling of the p53–mdm2 Oscillatory System

Published online by Cambridge University Press:  05 June 2009

K. E. Gordon
Affiliation:
Department of Mathematics, University of Dundee, WTB/MSI-Complex, Old Hawkhill, DD1 5EH Dundee, Scotland, UK
I. M.M. van Leeuwen
Affiliation:
Department of Mathematics, University of Dundee, WTB/MSI-Complex, Old Hawkhill, DD1 5EH Dundee, Scotland, UK epartment of Surgery and Oncology, University of Dundee, Ninewells Hospital, DD1 9SY Dundee, Scotland, UK
S. Laín
Affiliation:
epartment of Surgery and Oncology, University of Dundee, Ninewells Hospital, DD1 9SY Dundee, Scotland, UK
M. A.J. Chaplain*
Affiliation:
Department of Mathematics, University of Dundee, WTB/MSI-Complex, Old Hawkhill, DD1 5EH Dundee, Scotland, UK
Get access

Abstract

In this paper we investigate the role of spatial effects in determining the dynamics of a subclass of signalling pathways characterised by their ability to demonstrate oscillatory behaviour. To this end, we formulate a simple spatial model of the p53 network that accounts for both a negative feedback and a transcriptional delay. We show that the formation of protein density patterns can depend on the shape of the cell, position of the nucleus, and the protein diffusion rates. The temporal changes in the total amounts of protein are also subject to spatial influences. The level of DNA damage required to induce sustained oscillations, for instance, depends on the morphology of the cell. The model also provides a new interpretation of experimentally observed undamped oscillations in p53 levels in single cells. Our simulations reveal that alternate sequences of high- and low-amplitude oscillations can occur. We propose that the digital pulses may correspond to snap-shots of our high-amplitude sequences. Shorter waiting-times between subsequent time-lapse fluorescence microscopy images in combination with lower detection thresholds may reveal the irregular high-frequency oscillations suggested by our spatial model.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Alberts, A. Johnson, J. Lewis, K. Roberts, P. Walter. Molecular Biology of the Cell, Fourth Edition. Garland Science, Taylor and Francis Group Ltd, Oxford, 2002.
Appella, E., Anderson, C.W.. Post-transcriptional modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem., 268 (2001), 27642772. CrossRef
D. Bennett. Applications of Delay Differential Equations in Physiology and Epidemiology. PhD Thesis, University of Surrey, 2005.
Bernard, S., Cajavec, B., Pujo-Menjouet, L., Mackey, M.C., Herzel, H.. Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Phil. Trans. R. Soc. A, 364 (2006), 11551170. CrossRef
Ciliberto, A., Novak, B., Tyson, J.J.. Steady states and oscillations in the p53/mdm2 network. Cell Cycle, 4 (2005), 488493. CrossRef
Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., Pourquie, O.. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314 (2006), 15951598. CrossRef
B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia, 2002.
C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson. Interdisciplinary Applied Mathematics, Mathematical Biology: Computational Cell Biology. Springer-Verlag, New York, 2002.
Foo, R.S., Nam, Y.J., Ostreicher, M.J., Metzl, M.D., Whelan, R.S., Peng, C.F., Ashton, A.W., Fu, W., Mani, K., Chin, S.F., Provenzano, E., Ellis, I., Figg, N., Pinder, S., Bennett, M.R., Caldas, C., Kitsis, R.N.. Regulation of p53 tetramerization and nuclear export by ARC. Proc. Natl. Acad. Sci. USA, 104 (2007), 2082620831. CrossRef
Gallagher, S.J., Kefford, R.F., Rizos, H.. The ARF tumour suppressor. Intl. J. Biochem. Cell Biol., 38 (2006), 16371641. CrossRef
Haupt, Y., Maya, R., Kazaz, A., Oren, M.. Mdm2 promotes the rapid degradation of p53. Nature, 387 (1997), 296299. CrossRef
Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R. R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science, 298 (2002), 840843. CrossRef
Hupp, T.R., Sparks, A., Lane, D.P.. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 83 (1995), 237245. CrossRef
Kholodenko, B.N.. Cell signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7 (2006), 165176. CrossRef
Krishna, S., Jensen, M.H., Sneppen, K.. Minimal model of spiky oscillations in NF-κB. Proc. Natl. Acad. Sci. USA, 103 (2006), 1084010845. CrossRef
Kusumi, A., Yasushi, S., Mutsuya, Y.. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J., 65 (1993), 20212040. CrossRef
Lahav, G., Rosenfield, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Alon, U.. Dynamics of the p53-mdm2 feedback loop in individual cells. Nat. Gen., 36 (2004), 147150. CrossRef
Lev Bar-Or, R., Maya, R., Segel, L.A., Alon, U., Levine, A.J., Oren, M.. Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA, 97 (2000), 1125011255. CrossRef
Lewis, J.. Autoinhibition with transcriptional delay: a simple mechanism for the Zebrafish somitogenesis oscillator. Curr. Biol., 13 (2003), 13981408. CrossRef
H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell. Molecular Cell Biology. W.F. Freeman and Company, New York, 2003.
Luo, J., Li, M., Tang, Y., Laszkowska, M., Roeder, R.G., Gu, W.. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo . Proc. Natl. Acad. Sci. USA, 101 (2004), 22592264. CrossRef
Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.. A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA, 102 (2005), 1426614271. CrossRef
Mendrysa, S.M., Perry, M.E.. The p53 tumor suppressor protein does not regulate expression of is own inhibitor, MDM2, except under conditions of stress. Mol. Cell Biol., 20 (2000), 20232030. CrossRef
Meyers, J., Craig, J., Odde, D.J.. Potential for control of signaling pathways via cell size and shape. Curr. Biol., 16 (2006), 16851693. CrossRef
Mihalas, G.I., Simon, Z., Balea, G., Popa, E.. Possible oscillatory behaviour in p53-mdm2 interaction computer simulation. J. Biol. Syst., 8 (2000), 2129.
Monk, N.A.M.. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr. Biol., 13 (2003), 14091413. CrossRef
Mullineaux, C.W., Nenniger, A., Ray, N., Robinson, C.. Diffusion of green fluorescent protein in three cell environments in Escherichia coli . J. Bacteriol., 188 (2006), 3442-3448. CrossRef
Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson, J.R., Gibney, C.A., Foreman, B.E., Nelson, G., See, V., Horton, C.A., Spiler, D.G., Edwards, S.W., McDowell, H.P., Unitt, J.F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D.B., White, M.R.. Oscillations in NF-κB signaling control de dynamics of gene expression. Science, 306 (2004), 704708. CrossRef
Neves, S.R., Tsokas, P., Sarkar, A., Grace, E.A., Rangamani, P., Taubenfeld, S.M., Alberini, C.M., Schaff, J.C., Blitzer, R.D., Moraru, I.I., Iyengar, R.. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell, 133 (2008), 666680. CrossRefPubMed
Nie, L., Sasaki, M., Maki, C.G. C.G. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J. Biol. Chem., 282 (2007), 1461614625. CrossRef
Ogunnaike, B.A.. Elucidating the digital control mechanism for DNA damage repair with the p53-mdm2 system: single cell data analysis and ensemble modelling. J. R. Soc. Interface, 3 (2006), 175184. CrossRef
Owen, J.. Topological proteomics: a new approach to drug discovery. Drug Discovery Today, 6 (2001), 10811082. CrossRef
Pearce, I.G., Chaplain, M.A.J., Schoeld, P.G., Anderson, A.R.A., Hubbard, S.F.. Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications. J. Theor. Biol., 241 (2006), 876886. CrossRef
Pigolotti, S., Krishna, S., Jensen, M.H.. Oscillation patterns in negative feedback loops. Proc. Natl. Acad. Sci. USA, 104 (2007), 65336537. CrossRef
Schubert, W.. Cytomics in characterizing toponomes: towards the biological code of the cell. Cytometry, 69A (2006), 209211. CrossRef
Sherratt, J.A., Lewis, M.A., Fowler, A.C.. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92 (1995), 25242528. CrossRef
Sherratt, J.A., Eagen, B.T., Lewis, M.A.. Oscillations and chaos behind predatorprey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. London B, 52 (1997), 7992.
Sherratt, J.A.. Periodic travelling waves in cyclic predatorprey systems, Ecol. Lett., 352 (2001), 2138.
Shieh, S.Y., Ikeda, M., Taya, Y., Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91 (1997), 325334. CrossRef
Srividya, J., Gopinathan, M.S., Schnells, S. The effects of time delays in a phosphorylation-dephosphorylation pathway, Biophys. Chem., 125 (2007), 286297. CrossRef
Tang, Y., Zhao, W., Chen, Y., Zhao, Y., Gu, W.. Acetylation is indispensable for p53 activation. Cell, 133 (2008), 612626. CrossRefPubMed
Tiana, G., Jensen, M.H., Sneppen, K.. Time delay as a key to apoptosis induction in the p53 network, Eur. Phys. J. B, 29 (2002), 135140. CrossRef
Tiana, G., Krishna, S., Pigolotti, S., Jensen, M.H., Sneppen, K.. Oscillations and temporal signalling in cells. Phys. Biol., 4 (2007), R1R17. CrossRef
Vousden, K.H., Lane, D.P.. p53 in health and disease. Nat. Mol. Cell Biol., 8 (2007), 275283. CrossRef
Wagner, J., Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.. p53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. I.E.E. Proc. Syst. Biol., 152 (2005), 109118.
Wawra, C., Kuhl, M., Kestler, H.A.. Extended analyses of the Wnt/β-catenin pathway: robustness and oscillatory behaviour. FEBS Lett., 581 (2007), 40434048. CrossRef
Wolkenhauer, O., Ullah, M., Wellstead, P., Cho, K.H.. The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett., 579 (2005), 18461853. CrossRef
Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y., Oren, M.. A functional p53-response intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res., 23 (1995), 25842592. CrossRef
W.B.J. Zimmerman. Multiphysics Modeling With Finite Element Methods, Series on Stability, Vibration and Control of Systems, Series A - Vol.18. World Scientific Publishing Company, London, 2006.