Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T14:23:19.302Z Has data issue: false hasContentIssue false

Approximation faible pour les 0-cycles sur un produit de variétés rationnellement connexes

Published online by Cambridge University Press:  20 March 2017

YONGQI LIANG*
Affiliation:
Bâtiment Sophie Germain, Université Paris Diderot - Paris 7, Institut de Mathématiques de Jussieu - Paris Rive Gauche, 75013 Paris, France. e-mail: yongqi.liang@imj-prg.fr

Abstract

Consider weak approximation for 0-cycles on a smooth proper variety defined over a number field, it is conjectured to be controlled by the Brauer group of the variety. Let X be a Châtelet surface or a smooth compactification of a homogeneous space of a connected linear algebraic group with connected stabilizer. Let Y be a rationally connected variety. We prove that weak approximation for 0-cycles on the product X × Y is controlled by its Brauer group if it is the case for Y after every finite extension of the base field. We do not suppose the existence of 0-cycles of degree 1 neither on X nor on Y.

Résumé

Considérons l'approximation faible de 0-cycles sur une variété propre lisse définie sur un corps de nombres, elle est conjecturée d'étre contrôlée par le groupe de Brauer de la variété. Soit X une surface de Châtelet ou une compactification lisse d'un espace homogéne d'un groupe algébrique linéaire connexe à stabilisateur connexe. Soit Y une variété rationnellement connexe. Nous montrons que l'approximation faible de 0-cycles sur le produit X × Y est contrôlée par son groupe de Brauer si c'est le cas pour Y après toute extension finie du corps de base. Nous ne supposons l'existence de 0-cycles de degré 1 ni sur X ni sur Y.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Borovoi, M. The Brauer–Manin obstructions for homogeneous spaces with connected or abelian stabiliser. J. Reine Angew. Math. 473 (1996), 181194.Google Scholar
[2] Colliot-Thélène, J.-L.. L'arithmétique du groupe de Chow des zéro-cycles. J. Théorie de nombres de Bordeaux 7 (1995), 5173.Google Scholar
[3] Colliot-Thélène, J.-L. and Sansuc, J.-J.. On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch. Duke Math. J. 48 (1981), 421447.Google Scholar
[4] Colliot-Thélène, J.-L. and Swinnerton-Dyer, Sir Peter. Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties. J. reine angew. Math. 453 (1994), 49112.Google Scholar
[5] Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, Sir Peter. Intersections of two quadrics and Châtelet surfaces II. J. Reine Angew. Math. 374 (1987) 72168.Google Scholar
[6] Colliot-Thélène, J.-L., Skorobogatov, A. N. and Swinnerton-Dyer, Sir Peter. Rational points and zero-cycles on fibred varieties : Schinzel's hypothesis and Salberger's device. J. Reine Angew. Math. 495 (1998), 128.Google Scholar
[7] Harpaz, Y. and Wittenberg, O. On the fibration method for zero-cycles and rational points. Annals of Mathematics 183 (1) (2016), 229295.Google Scholar
[8] Kato, K. and Saito, S. Global class field theory of arithmetic schemes. Contemp. Math. 55 (1986), 255331.Google Scholar
[9] Liang, Y. Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus d'une courbe: I. Math. Ann. 353 (4) (2012), 13771398.Google Scholar
[10] Liang, Y. Arithmetic of 0-cycles on varieties defined over number fields. Ann. Sci. École Norm. Sup. 46 (1) (2013), 3556.CrossRefGoogle Scholar
[11] Liang, Y. Local-global principle for 0-cycles on fibrations over rationally connected bases. Adv. Math. 297 (2016), 214237.Google Scholar
[12] Manin, Yu. I.. Le groupe de Brauer-Grothendieck en géométrie diophantienne. In Actes du Congrès Intern. Math. (Nice 1970), vol. 1 (Gauthiers–Villars, 1971), pp. 401411.Google Scholar
[13] Skorobogatov, A. N. and Zarhin, Y. G. The Brauer group and the Brauer-Manin set of products of varieties. J. Eur. Math. Soc. 16 (2014), 749769.Google Scholar
[14] Wittenberg, O. Zéro-cycles sur les fibrations au-dessus d'une courbe de genre quelconque. J. Duke Math. 161 (2012), 21132166.CrossRefGoogle Scholar